Triploidy induction by cold shock in curimba ( Prochilodus argenteus )

Author(s):  
Larissa Monteiro Vasconcelos ◽  
Renata Farias ◽  
Iru Menezes Guimarães ◽  
Athiê Jorge Guerra Santos ◽  
Humber Agrelli Andrade ◽  
...  
Aquaculture ◽  
2007 ◽  
Vol 272 ◽  
pp. S110-S114 ◽  
Author(s):  
Fábio Soller Dias da Silva ◽  
Renata Guimarães Moreira ◽  
Carlos Robinson Orozco-Zapata ◽  
Alexandre Wagner Silva Hilsdorf

2001 ◽  
Vol 14 (3) ◽  
Author(s):  
A.A. GHEYAS ◽  
M.F.A. MOLLAH ◽  
M.G. HUSSAIN

2020 ◽  
pp. 172-179
Author(s):  
A.Ya. Rozinov

The parameters of heating and cooling of rivets made of steel and aluminum alloy, as well as data of fi lling holes with these rivets during hot and cold riveting are compared. The features of the process of performing cold impact riveting by direct and reverse methods, as well as the possibility of reducing the force of this riveting by improving the closing heads and constructive transformation of the rivets themselves are considered. Features of physiological infl uence of cold shock riveting on hands, elbows and shoulders of workers are determined. Describes the construction of riveting hammers and supports with spring shock absorbers that prevent the disease of workers vibration disease, portable riveting presses of pneumatic and hydraulic action. A description of the press equipment and technology of bolt-riveting connections, allowing mechanizing the process of cold riveting is given.


2011 ◽  
Vol 33 (5) ◽  
pp. 520-526 ◽  
Author(s):  
Na LI ◽  
Xiu-Zhen DU ◽  
Xiao-Mei PAN ◽  
Jin-Sheng WANG ◽  
Cong-Feng SONG

2021 ◽  
Vol 9 (5) ◽  
pp. 1061
Author(s):  
Francis Muchaamba ◽  
Roger Stephan ◽  
Taurai Tasara

Listeria monocytogenes has evolved an extensive array of mechanisms for coping with stress and adapting to changing environmental conditions, ensuring its virulence phenotype expression. For this reason, L. monocytogenes has been identified as a significant food safety and public health concern. Among these adaptation systems are cold shock proteins (Csps), which facilitate rapid response to stress exposure. L. monocytogenes has three highly conserved csp genes, namely, cspA, cspB, and cspD. Using a series of csp deletion mutants, it has been shown that L. monocytogenes Csps are important for biofilm formation, motility, cold, osmotic, desiccation, and oxidative stress tolerance. Moreover, they are involved in overall virulence by impacting the expression of virulence-associated phenotypes, such as hemolysis and cell invasion. It is postulated that during stress exposure, Csps function to counteract harmful effects of stress, thereby preserving cell functions, such as DNA replication, transcription and translation, ensuring survival and growth of the cell. Interestingly, it seems that Csps might suppress tolerance to some stresses as their removal resulted in increased tolerance to stresses, such as desiccation for some strains. Differences in csp roles among strains from different genetic backgrounds are apparent for desiccation tolerance and biofilm production. Additionally, hierarchical trends for the different Csps and functional redundancies were observed on their influences on stress tolerance and virulence. Overall current data suggest that Csps have a wider role in bacteria physiology than previously assumed.


2021 ◽  
Vol 12 (8) ◽  
Author(s):  
Guo-dong Zhu ◽  
Jing Yu ◽  
Zheng-yu Sun ◽  
Yan Chen ◽  
Hong-mei Zheng ◽  
...  

AbstractGlioblastomas (GBM) is the most common primary malignant brain tumor, and radiotherapy plays a critical role in its therapeutic management. Unfortunately, the development of radioresistance is universal. Here, we identified calcium-regulated heat-stable protein 1 (CARHSP1) as a critical driver for radioresistance utilizing genome-wide CRISPR activation screening. This is a protein with a cold-shock domain (CSD)-containing that is highly similar to cold-shock proteins. CARHSP1 mRNA level was upregulated in irradiation-resistant GBM cells and knockdown of CARHSP1 sensitized GBM cells to radiotherapy. The high expression of CARHSP1 upon radiation might mediate radioresistance by activating the inflammatory signaling pathway. More importantly, patients with high levels of CARHSP1 had poorer survival when treated with radiotherapy. Collectively, our findings suggested that targeting the CARHSP1/TNF-α inflammatory signaling activation induced by radiotherapy might directly affect radioresistance and present an attractive therapeutic target for GBM, particularly for patients with high levels of CARHSP1.


Sign in / Sign up

Export Citation Format

Share Document