Aspergillus aculeatus enhances potassium uptake and photosynthetic characteristics in perennial ryegrass by increasing potassium availability

Author(s):  
Xiaoning Li ◽  
Yanling Yin ◽  
Shugao Fan ◽  
Xiao Xu ◽  
Erick Amombo ◽  
...  
2019 ◽  
Vol 144 (3) ◽  
pp. 182-192 ◽  
Author(s):  
Xiaoning Li ◽  
Xiaoyan Sun ◽  
Guangyang Wang ◽  
Erick Amombo ◽  
Xiuwen Zhou ◽  
...  

Phosphorus (P) is an essential nutrient element that is necessary for plant growth and development. However, most of the P exists in insoluble form. Aspergillus aculeatus has been reported to be able to solubilize insoluble forms of P. Here, to investigate the P-solubilizing effect of A. aculeatus on the performance of perennial ryegrass (Lolium perenne) under P-deficiency stress, we created four treatment groups: control [i.e., no Ca3(PO4)2 or A. aculeatus], A. aculeatus only (F), Ca3(PO4)2 and Ca3(PO4)2 + A. aculeatus [Ca3(PO4)2 + F] treatment, and Ca3(PO4)2 at concentrations of 0 and 3 g per pot (0.5 kg substrate per pot). In our results, the liquid medium inoculated with A. aculeatus exhibited enhanced soluble P and organic acid content (tartaric acid, citric acid, and aminoacetic acid) accompanied with lower pH, compared with the noninoculated regimen. Furthermore, A. aculeatus also played a primary role in increasing the soluble P content of substrate (1 sawdust: 3 sand), the growth rate, turf quality, and photosynthetic capacity of the plant exposed to Ca3(PO4)2 + F treatment, compared with other groups. Finally, in perennial ryegrass leaves, there was a dramatic increase in the valine, serine, tyrosine, and proline contents, and a remarkable decline in the glutamic acid, succinic acid, citric acid, and fumaric acid contents in the Ca3(PO4)2 + F regimen, compared with other groups. Overall, our results suggested that A. aculeatus may play a crucial role in the process of solubilizing Ca3(PO4)2 and modulating perennial ryegrass growth under P-deficiency stress.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xiaoning Li ◽  
Chuncheng Zhao ◽  
Ting Zhang ◽  
Guangyang Wang ◽  
Erick Amombo ◽  
...  

Perennial ryegrass (Lolium perenne) is a cool-season grass whose growth and development are limited by drought and high temperature. Aspergillus aculeatus has been reported to promote plant growth and counteract the adverse effects of abiotic stresses. The objective of this study was to assess A. aculeatus-induced response mechanisms to drought and heat resistance in perennial ryegrass. We evaluated the physiological and biochemical markers of drought and heat stress based on the hormone homeostasis, photosynthesis, antioxidant enzymes activity, lipid peroxidation, and genes expression level. We found out that under drought and heat stress, A. aculeatus-inoculated leaves exhibited higher abscisic acid (ABA) and lower salicylic acid (SA) contents than non-inoculated regimes. In addition, under drought and heat stress, the fungus enhanced the photosynthetic performance, decreased the antioxidase activities, and mitigated membrane lipid peroxidation compared to non-inoculated regime. Furthermore, under drought stress, A. aculeatus induced a dramatic upregulation of sHSP17.8 and DREB1A and a downregulation of POD47, Cu/ZnSOD, and FeSOD genes. In addition, under heat stress, A. aculeatus-inoculated plants exhibited a higher expression level of HSP26.7a, sHSP17.8, and DREB1A while a lower expression level of POD47 and FeSOD than non-inoculated ones. Our results provide an evidence of the protective role of A. aculeatus in perennial ryegrass response to drought and heat stresses.


2018 ◽  
Vol 9 ◽  
Author(s):  
Shijuan Han ◽  
Xiaoning Li ◽  
Erick Amombo ◽  
Jinmin Fu ◽  
Yan Xie

Agronomie ◽  
2003 ◽  
Vol 23 (5-6) ◽  
pp. 503-510 ◽  
Author(s):  
Florence Paynel ◽  
Jean Bernard Cliquet

Sign in / Sign up

Export Citation Format

Share Document