Postglacial range expansion shaped the spatial genetic structure in a marine habitat-forming species: Implications for conservation plans in the Eastern Adriatic Sea

2018 ◽  
Vol 45 (12) ◽  
pp. 2645-2657 ◽  
Author(s):  
Jean-Baptiste Ledoux ◽  
Maša Frleta-Valić ◽  
Silvija Kipson ◽  
Agostinho Antunes ◽  
Emma Cebrian ◽  
...  
2019 ◽  
Author(s):  
Pierre De Wit ◽  
Per R. Jonsson ◽  
Ricardo T. Pereyra ◽  
Marina Panova ◽  
Carl André ◽  
...  

AbstractIn the Baltic Sea, recent range expansions following the opening of the Danish straits have resulted in a low-diversity ecosystem, both among and within species. However, relatively little is known about population genetic patterns within the basin, except for in a few commercially caught species and some primary producers thought to be ecosystem engineers. Here, we investigate the population genetic structure of the ecologically important crustaceanIdotea balthicathroughout the Baltic Sea using an array of 33,774 genome-wide SNP markers derived from 2b-RAD sequencing. We also generate a biophysical connectivity matrix, with which we compare the genomic data. We find strong population structure on small scales across the Baltic Sea, and that genomic patterns in most cases closely match biophysical connectivity, suggesting that current patterns are important for dispersal of this species. We also find a strong signal of multiple bottlenecks during the initial range expansion, in the form of reduced heterozygosity along the historical expansion front. The lack of gene flow among sampling sites in the Baltic Sea environmental gradient potentiates local adaptation, while at the same time also increasing genetic drift in low-diversity areas.


2005 ◽  
Vol 250 (3-4) ◽  
pp. 231-242 ◽  
Author(s):  
M. Y. Chung ◽  
K.-J. Kim ◽  
J.-H. Pak ◽  
C.-W. Park ◽  
B.-Y. Sun ◽  
...  

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Kelly B. Klingler ◽  
Joshua P. Jahner ◽  
Thomas L. Parchman ◽  
Chris Ray ◽  
Mary M. Peacock

Abstract Background Distributional responses by alpine taxa to repeated, glacial-interglacial cycles throughout the last two million years have significantly influenced the spatial genetic structure of populations. These effects have been exacerbated for the American pika (Ochotona princeps), a small alpine lagomorph constrained by thermal sensitivity and a limited dispersal capacity. As a species of conservation concern, long-term lack of gene flow has important consequences for landscape genetic structure and levels of diversity within populations. Here, we use reduced representation sequencing (ddRADseq) to provide a genome-wide perspective on patterns of genetic variation across pika populations representing distinct subspecies. To investigate how landscape and environmental features shape genetic variation, we collected genetic samples from distinct geographic regions as well as across finer spatial scales in two geographically proximate mountain ranges of eastern Nevada. Results Our genome-wide analyses corroborate range-wide, mitochondrial subspecific designations and reveal pronounced fine-scale population structure between the Ruby Mountains and East Humboldt Range of eastern Nevada. Populations in Nevada were characterized by low genetic diversity (π = 0.0006–0.0009; θW = 0.0005–0.0007) relative to populations in California (π = 0.0014–0.0019; θW = 0.0011–0.0017) and the Rocky Mountains (π = 0.0025–0.0027; θW = 0.0021–0.0024), indicating substantial genetic drift in these isolated populations. Tajima’s D was positive for all sites (D = 0.240–0.811), consistent with recent contraction in population sizes range-wide. Conclusions Substantial influences of geography, elevation and climate variables on genetic differentiation were also detected and may interact with the regional effects of anthropogenic climate change to force the loss of unique genetic lineages through continued population extirpations in the Great Basin and Sierra Nevada.


2021 ◽  
Vol 78 (2) ◽  
Author(s):  
Błażej Wójkiewicz ◽  
Andrzewj Lewandowski ◽  
Weronika B. Żukowska ◽  
Monika Litkowiec ◽  
Witold Wachowiak

Abstract Context Black poplar (Populus nigra L.) is a keystone species of European riparian ecosystems that has been negatively impacted by riverside urbanization for centuries. Consequently, it has become an endangered tree species in many European countries. The establishment of a suitable rescue plan of the remaining black poplar forest stands requires a preliminary knowledge about the distribution of genetic variation among species populations. However, for some parts of the P. nigra distribution in Europe, the genetic resources and demographic history remain poorly recognized. Aims Here, we present the first study on identifying and characterizing the genetic resources of black poplar from the Oder valley in Poland. This study (1) assessed the genetic variability and effective population size of populations and (2) examined whether gene flow is limited by distance or there is a single migrant pool along the studied river system. Methods A total of 582 poplar trees derived from nine black poplar populations were investigated with nuclear microsatellite markers. Results (1) The allelic richness and heterozygosity level were high and comparable between populations. (2) The genetic structure of the studied poplar stands was not homogenous. (3) The signatures of past bottlenecks were detected. Conclusion Our study (1) provides evidence for genetic substructuring of natural black poplar populations from the studied river catchment, which is not a frequent phenomenon reported for this species in Europe, and (2) indicates which poplar stands may serve as new genetic conservation units (GCUs) of this species in Europe. Key message The genetic resources of black poplar in the Oder River valley are still substantial compared to those reported for rivers in Western Europe. On the other hand, clear signals of isolation by distance and genetic erosion reflected in small effective population sizes and high spatial genetic structure of the analyzed populations were detected. Based on these findings, we recommend the in situ and ex situ conservation strategies for conserving and restoring the genetic resources of black poplar populations in this strongly transformed by human river valley ecosystem.


PLoS ONE ◽  
2011 ◽  
Vol 6 (10) ◽  
pp. e25359 ◽  
Author(s):  
Patrick M. A. James ◽  
Dave W. Coltman ◽  
Brent W. Murray ◽  
Richard C. Hamelin ◽  
Felix A. H. Sperling

Sign in / Sign up

Export Citation Format

Share Document