scholarly journals The flickering connectivity system of the north Andean páramos

2019 ◽  
Author(s):  
Suzette G.A. Flantua ◽  
Aaron O’Dea ◽  
Renske E. Onstein ◽  
Henry Hooghiemstra

ABSTRACT AND KEYWORDSAimTo quantify the effect of Pleistocene climate fluctuations on habitat connectivity across páramos in the Neotropics.LocationThe Northern AndesMethodsThe unique páramos habitat underwent dynamic shifts in elevation in response to changing climate conditions during the Pleistocene. The lower boundary of the páramos is defined by the upper forest line, which is known to be highly responsive to temperature. Here we reconstruct the extent and connectivity of páramos over the last 1 million years (Myr) by reconstructing the UFL from the long fossil pollen record of Funza09, Colombia, and applying it to spatial mapping on modern topographies across the Northern Andes for 752 time slices. Data provide an estimate of how often and for how long different elevations were occupied by páramos and estimates their connectivity to provide insights into the role of topography in biogeographic patterns of páramos.ResultsOur findings show that connectivity amongst páramos of the Northern Andes was highly dynamic, both within and across mountain ranges. Connectivity amongst páramos peaked during extreme glacial periods but intermediate cool stadials and mild interstadials dominated the climate system. These variable degrees of connectivity through time result in what we term the ‘flickering connectivity system’. We provide a visualization (video) to showcase this phenomenon. Patterns of connectivity in the Northern Andes contradict patterns observed in other mountain ranges of differing topographies.Main conclusionsPleistocene climate change was the driver of significant elevational and spatial shifts in páramos causing dynamic changes in habitat connectivity across and within all mountain ranges. Some generalities emerge, including the fact that connectivity was greatest during the most ephemeral of times. However, the timing, duration and degree of connectivity varied substantially among mountain ranges depending on their topographic configuration. The flickering connectivity system of the páramos uncovers the dynamic settings in which evolutionary radiations shaped the most diverse alpine biome on Earth.

2009 ◽  
Vol 36 (6) ◽  
pp. 1138-1151 ◽  
Author(s):  
Maarten H. D. Larmuseau ◽  
Jeroen K. J. Van Houdt ◽  
Jef Guelinckx ◽  
Bart Hellemans ◽  
Filip A. M. Volckaert

2013 ◽  
Vol 9 (4) ◽  
pp. 4599-4653 ◽  
Author(s):  
A. A. Andreev ◽  
P. E. Tarasov ◽  
V. Wennrich ◽  
E. Raschke ◽  
U. Herzschuh ◽  
...  

Abstract. The 318 m thick lacustrine sediment record in Lake El'gygytgyn, northeastern Russian Arctic cored by the international El'gygytgyn Drilling Project provides unique opportunities allowing the time-continuous reconstruction of the regional paleoenvironmental history for the past 3.6 Myr. Pollen studies of the lower 216 m of the lacustrine sediments show their value as an excellent archive of vegetation and climate changes during the Late Pliocene and Early Pleistocene. About 3.50–3.35 Myr BP the vegetation at Lake El'gygytgyn, in nowadays tundra area, was dominated by spruce-larch-fir-hemlock forests. After ca. 3.4 Myr BP dark coniferous taxa gradually disappeared. A very pronounced environmental changes took place at ca. 3.305–3.275 Myr BP, corresponding with the Marine Isotope Stage (MIS) M2, when treeless tundra- and steppe-like habitats became dominant in the regional vegetation. Climate conditions were similar to those of Late Pleistocene cold intervals. Numerous coprophilous fungi spores identified in the pollen samples suggest the presence of grazing animals around the lake. Following the MIS M2 event, larch-pine forests with some spruce mostly dominated in the area until ca. 2.6 Myr BP, interrupted by colder and drier intervals ca. 3.04–3.02, 2.93–2.91, and 2.725–2.695 Myr BP. At the beginning of the Pleistocene, ca. 2.6 Myr BP, noticeable climatic deterioration occurred. Forested habitats changed to predominantly treeless and shrubby environments, which reflect a relatively cold and dry climate. Revealed peaks in green algae colonies (Botryococcus) around 2.53, 2.45, 2.320–2.305 and 2.175–2.150 Myr BP suggest a spread of shallow water environments. Few intervals (i.e. 2.55–2.53, ca. 2.37, and 2.35–2.32 Myr BP) with a higher presence of coniferous taxa (mostly pine and larch) document some relatively short-term climate ameliorations.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e5866
Author(s):  
Andrinajoro R. Rakotoarivelo ◽  
Steven M. Goodman ◽  
M. Corrie Schoeman ◽  
Sandi Willows-Munro

Macronycteris commersoni(Hipposideridae), a bat species endemic to Madagascar, is widespread across the island and utilizes a range of habitat types including open woodland, degraded habitats, and forested areas from sea level to 1,325 m. Despite being widely distributed, there is evidence thatM. commersoniexhibits morphological and bioacoustic variation across its geographical range. We investigated the fine-scale phylogeographic structure of populations in the western half of the island using extensive spatial sampling and sequence data from two mitochondrial DNA regions. Our results indicated several lineages withinM. commersoni.Individuals collected from northern Madagascar formed a single monophyletic clade (clade C). A second clade (clade B) included individuals collected from the south-western portion of the island. This second clade displayed more phylogeographical partitioning with differences in mtDNA haplotypes frequency detected between populations collected in different bioclimatic regions. Lineage dispersal, genetic divergence, and timing of expansion events ofM.commersoniwere probably associated with Pleistocene climate fluctuations. Our data suggest that the northern and the central western regions of Madagascar may have acted as refugia for this species during periods of cooler and drier climate conditions associated with the Pleistocene.


2014 ◽  
Vol 15 (6) ◽  
pp. 2370-2396 ◽  
Author(s):  
Alfonso Senatore ◽  
Giuseppe Mendicino ◽  
Hans Richard Knoche ◽  
Harald Kunstmann

Abstract An analysis of the effects of SST representation on precipitation in long-term continuous simulations was carried out for the Mediterranean peninsula of Calabria, Italy, which is characterized by complex coastlines and orography. A parameterization analysis was performed to find an optimal model configuration, using a method where SST fields are directly ingested from NCEP datasets into the Weather Research and Forecasting (WRF) Model lower boundary condition files. The results of the optimal configuration were used for a comparison with recorded precipitation patterns for a very wet period (from November 2008 to January 2009), adopting several interpolation options available in the WRF Preprocessing System. An additional comparison was made against a uniform variation of the original SST fields by ε = ±0.5 K. It was found that the interpolation options mainly affect near-coastline SSTs, where methods requiring fewer source data points have several advantages. Effects of SST representation on precipitation, accumulated over the whole 3-month period, are generally lower than ±2%, but a specific class of events (synoptic situations) with strong differences in precipitation patterns was identified. These events are connected to pressure systems moving from the African coast to the north and approaching the Sicilian and Calabrian coastlines. Two of these events, which occurred on 27–29 December 2008 and 9 January 2009, were analyzed in detail, highlighting that small variations of SST values induce slight shifts in the paths of the weather fronts. These slight shifts are important enough to determine whether or not wet air masses can reach the mountain ranges close to the coast, where rainfall intensity is enhanced by orographic effects.


2009 ◽  
Vol 72 (2) ◽  
pp. 234-245 ◽  
Author(s):  
Leila M. Gonzales ◽  
Eric C. Grimm

AbstractLate-glacial (17–11 cal ka BP) pollen records from midwestern North America show similar vegetation trends; however, poor dating resolution, wide-interval pollen counts, and variable sedimentation rates have prevented the direct correlation with the North Atlantic Event Stratigraphy as represented in the Greenland ice-core records, thus preventing the understanding of the teleconnections and mechanisms of late-Quaternary events in the Northern Hemisphere. The widespread occurrence of late-glacial vegetation and climates with no modern analogs also hinders late-glacial climate reconstructions. A high-resolution pollen record with a well-controlled age model from Crystal Lake in northeastern Illinois reveals vegetation and climate conditions during the late-glacial and early Holocene intervals. Late-glacial Crystal Lake pollen assemblages, dominated by Picea mariana and Fraxinus nigra with lesser amounts of Abies and Larix, suggest relatively wet climate despite fluctuations between colder and warmer temperatures. Vegetation changes at Crystal Lake are coeval with millennial-scale trends in the NGRIP ice-core record, but major shifts in vegetation at Crystal Lake lag the NGRIP record by 300–400 yr. This lag may be due to the proximity of the Laurentide ice sheet, the ice sheet's inherent slowness in response to rapid climate changes, and its effect on frontal boundary conditions and lake-effect temperatures.


2019 ◽  
Vol 53 (4) ◽  
pp. 297-312
Author(s):  
Yu. O. Andryushchenko ◽  
V. S. Gavrilenko ◽  
V. A. Kostiushyn ◽  
V. N. Kucherenko ◽  
A. S. Mezinov ◽  
...  

Abstract In the article is analyzed own field data of the authors and scientific publications on the wintering of Anserinae in the Azov-Black Sea region of Ukraine in 1900–2017, but the main data was obtained in frame of international mid-winter counts (IWC) in 2005–2017. It was found that 9 species of Anserinae occur in this region during the different seasons of the year: Anser anser — nesting, wintering and migrating; Rufibrenta ruficollis, A. albifrons, A. erythropus, A. fabalis — migrating and wintering; Branta canadensis, Branta leucopsis, Branta bernicla, Chen caerulescens — vagrant or birds which flew away from captivity (zoo etc.). Eulabeia indica — is possible vagrant species. The most numerous wintering species is A. albifrons, common — Rufibrenta ruficollis, not numerous — Anser anser, the other species are not met annually and registered in a very small number. There was almost tenfold drop in number of wintering geese in the Azov-Black Sea region of Ukraine during the period of counts. The main reasons of such reducing of geese amount are the followwing: weather and climate conditions, changes in the forage acessibility, hunting and poaching pressure, poisoning as a result of deratization of agricultural lands, and from 2014 — the militarization of the Syvash area and stop of water supplying of Crimea through the North Crimean channell. It is likely that the factors mentioned above led to relocating of wintering areas of Anserinae, and resulted in decreasing of their amount in this region.


2020 ◽  
Vol 12 (1) ◽  
pp. 1497-1511
Author(s):  
Alexey Naumov ◽  
Varvara Akimova ◽  
Daria Sidorova ◽  
Mikhail Topnikov

AbstractDespite harsh climate, agriculture on the northern margins of Russia still remains the backbone of food security. Historically, in both regions studied in this article – the Republic of Karelia and the Republic of Sakha (Yakutia) – agricultural activities as dairy farming and even cropping were well adapted to local conditions including traditional activities such as horse breeding typical for Yakutia. Using three different sources of information – official statistics, expert interviews, and field observations – allowed us to draw a conclusion that there are both similarities and differences in agricultural development and land use of these two studied regions. The differences arise from agro-climate conditions, settlement history, specialization, and spatial pattern of economy. In both regions, farming is concentrated within the areas with most suitable natural conditions. Yet, even there, agricultural land use is shrinking, especially in Karelia. Both regions are prone to being affected by seasonality, but vary in the degree of its influence. Geographical location plays special role, and weaknesses caused by remoteness to some extent become advantage as in Yakutia. Proximity effect is controversial. In Karelia, impact of neighboring Finland is insignificant compared with the nearby second Russian city – Saint Petersburg.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1611
Author(s):  
Agnieszka Mroczkowska ◽  
Dominik Pawłowski ◽  
Emilie Gauthier ◽  
Andrey Mazurkevich ◽  
Tomi P. Luoto ◽  
...  

Although extensive archeological research works have been conducted in the Serteya region in recent years, the Holocene climate history in the Western Dvina Lakeland in Western Russia is still poorly understood. The Neolithic human occupation of the Serteyka lake–river system responded to climate oscillations, resulting in the development of a pile-dwelling settlement between 5.9 and 4.2 ka cal BP. In this paper, we present the quantitative paleoclimatic reconstructions of the Northgrippian stage (8.2–4.2 ka cal BP) from the Great Serteya Palaeolake Basin. The reconstructions were created based on a multiproxy (Chironomidae, pollen and Cladocera) approach. The mean July air temperature remained at 17–20 °C, which is similar to the present temperature in the Smolensk Upland. The summer temperature revealed only weak oscillations during 5.9 and 4.2 ka cal BP. A more remarkable feature during those events was an increase in continentality, manifested by a lower winter temperature and lower annual precipitation. During the third, intermediate oscillation in 5.0–4.7 ka cal BP, a rise in summer temperature and stronger shifts in continental air masses were recorded. It is still unclear if the above-described climate fluctuations are linked to the North Atlantic Oscillation and can be interpreted as an indication of Bond events because only a few high-resolution paleoclimatic reconstructions from the region have been presented and these reconstructions do not demonstrate explicit oscillations in the period of 5.9 and 4.2 ka cal BP.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 430 ◽  
Author(s):  
Ronald S. Zalesny ◽  
Andrej Pilipović ◽  
Elizabeth R. Rogers ◽  
Joel G. Burken ◽  
Richard A. Hallett ◽  
...  

Poplar remediation systems are ideal for reducing runoff, cleaning groundwater, and delivering ecosystem services to the North American Great Lakes and globally. We used phyto-recurrent selection (PRS) to establish sixteen phytoremediation buffer systems (phyto buffers) (buffer groups: 2017 × 6; 2018 × 5; 2019 × 5) throughout the Lake Superior and Lake Michigan watersheds comprised of twelve PRS-selected clones each year. We tested for differences in genotypes, environments, and their interactions for health, height, diameter, and volume from ages one to four years. All trees had optimal health. Mean first-, second-, and third-year volume ranged from 71 ± 26 to 132 ± 39 cm3; 1440 ± 575 to 5765 ± 1132 cm3; and 8826 ± 2646 to 10,530 ± 2110 cm3, respectively. Fourth-year mean annual increment of 2017 buffer group trees ranged from 1.1 ± 0.7 to 7.8 ± 0.5 Mg ha−1 yr−1. We identified generalist varieties with superior establishment across a broad range of buffers (‘DM114’, ‘NC14106’, ‘99038022’, ‘99059016’) and specialist clones uniquely adapted to local soil and climate conditions (‘7300502’, ‘DN5’, ‘DN34’, ‘DN177’, ‘NM2’, ‘NM5’, ‘NM6’). Using generalists and specialists enhances the potential for phytoremediation best management practices that are geographically robust, being regionally designed yet globally relevant.


2021 ◽  
Author(s):  
Catherine Drinkorn ◽  
Jan Saynisch-Wagner ◽  
Gabriele Uenzelmann-Neben ◽  
Maik Thomas

<p>Ocean sediment drifts contain important information about past bottom currents but a direct link from the study of sedimentary archives to ocean dynamics is not always possible. To close this gap for the North Atlantic, we set up a  new coupled Ice-Ocean-Sediment Model of the entire Pan-Arctic region. In order to evaluate the potential dynamics of the model, we conducted decadal sensitivity experiments. In our model contouritic sedimentation shows a significant sensitivity towards climate variability for most of the contourite drift locations in the model domain. We observe a general decrease of sedimentation rates during warm conditions with decreasing atmospheric and oceanic gradients and an extensive increase of sedimentation rates during cold conditions with respective increased gradients. We can relate these results to changes in the dominant bottom circulation supplying deep water masses to the contourite sites under different climate conditions. A better understanding of northern deep water pathways in the Atlantic Meridional Overturning Circulation (AMOC) is crucial for evaluating possible consequences of climate change in the ocean.</p>


Sign in / Sign up

Export Citation Format

Share Document