Diapause termination of Rhagoletis cerasi pupae is regulated by local adaptation and phenotypic plasticity: escape in time through bet-hedging strategies

2013 ◽  
Vol 27 (1) ◽  
pp. 43-54 ◽  
Author(s):  
C. A. Moraiti ◽  
C. T. Nakas ◽  
N. T. Papadopoulos
2019 ◽  
Author(s):  
Jens Joschinski ◽  
Dries Bonte

AbstractMany organisms escape from lethal climatological conditions by entering a resistant resting stage called diapause, which needs to be optimally timed with seasonal change. As climate change exerts selection pressure on phenology, the evolution of mean diapause timing, but also of phenotypic plasticity and bet-hedging strategies is expected. Especially the latter as a strategy to cope with unpredictability is little considered in the context of climate change.Contemporary patterns of phenological strategies across a geographic range may provide information about their evolvability. We thus extracted 458 diapause reaction norms from 60 studies. First, we correlated mean diapause timing with mean winter onset. Then we partitioned the reaction norm variance into a temporal component (phenotypic plasticity) and among-offspring variance (diversified bet-hedging) and correlated this variance composition with predictability of winter onset. Mean diapause timing correlated reasonably well with mean winter onset, except for populations at high latitudes, which apparently failed to track early onsets. Variance among offspring was, however, limited and correlated only weakly with environmental predictability, indicating little scope for bet-hedging. The apparent lack of phenological bet-hedging strategies may pose a risk in a less predictable climate, but we also highlight the need for more data on alternative strategies.


2020 ◽  
Vol 50 (2) ◽  
pp. 161-169 ◽  
Author(s):  
O. Alejandro Aleuy ◽  
Stephanie Peacock ◽  
Eric P. Hoberg ◽  
Kathreen E. Ruckstuhl ◽  
Taylor Brooks ◽  
...  

2020 ◽  
Vol 54 (1) ◽  
pp. 309-322 ◽  
Author(s):  
Scott R. Goeppner ◽  
Maggie E. Roberts ◽  
Lynne E. Beaty ◽  
Barney Luttbeg

2016 ◽  
Vol 52 (1) ◽  
pp. 70-80 ◽  
Author(s):  
MARK D. McCOY ◽  
MARA A. MULROONEY ◽  
MARK HORROCKS ◽  
HAI CHENG ◽  
THEGN N. LADEFOGED

2022 ◽  
Author(s):  
Hanna ten Brink ◽  
Thomas Ray Haaland ◽  
Oystein Hjorthol Opedal

The common occurrence of within-population variation in germination behavior and associated traits such as seed size has long fascinated evolutionary ecologists. In annuals, unpredictable environments are known to select for bet-hedging strategies causing variation in dormancy duration and germination strategies. Variation in germination timing and associated traits is also commonly observed in perennials, and often tracks gradients of environmental predictability. Although bet-hedging is thought to occur less frequently in long-lived organisms, these observations suggest a role of bet-hedging strategies in perennials occupying unpredictable environments. We use complementary numerical and evolutionary simulation models of within- and among-individual variation in germination behavior in seasonal environments to show how bet-hedging interacts with density dependence, life-history traits, and priority effects due to competitive differences among germination strategies. We reveal substantial scope for bet-hedging to produce variation in germination behavior in long-lived plants, when "false starts" to the growing season results in either competitive advantages or increased mortality risk for alternative germination strategies. Additionally, we find that two distinct germination strategies can evolve and coexist through negative frequency-dependent selection. These models extend insights from bet-hedging theory to perennials and explore how competitive communities may be affected by ongoing changes in climate and seasonality patterns.


Genes ◽  
2019 ◽  
Vol 10 (11) ◽  
pp. 875
Author(s):  
Joana Sabino-Pinto ◽  
Daniel J. Goedbloed ◽  
Eugenia Sanchez ◽  
Till Czypionka ◽  
Arne W. Nolte ◽  
...  

Phenotypic plasticity and local adaptation via genetic change are two major mechanisms of response to dynamic environmental conditions. These mechanisms are not mutually exclusive, since genetic change can establish similar phenotypes to plasticity. This connection between both mechanisms raises the question of how much of the variation observed between species or populations is plastic and how much of it is genetic. In this study, we used a structured population of fire salamanders (Salamandra salamandra), in which two subpopulations differ in terms of physiology, genetics, mate-, and habitat preferences. Our goal was to identify candidate genes for differential habitat adaptation in this system, and to explore the degree of plasticity compared to local adaptation. We therefore performed a reciprocal transfer experiment of stream- and pond-originated salamander larvae and analyzed changes in morphology and transcriptomic profile (using species-specific microarrays). We observed that stream- and pond-originated individuals diverge in morphology and gene expression. For instance, pond-originated larvae have larger gills, likely to cope with oxygen-poor ponds. When transferred to streams, pond-originated larvae showed a high degree of plasticity, resembling the morphology and gene expression of stream-originated larvae (reversion); however the same was not found for stream-originated larvae when transferred to ponds, where the expression of genes related to reduction-oxidation processes was increased, possibly to cope with environmental stress. The lack of symmetrical responses between transplanted animals highlights the fact that the adaptations are not fully plastic and that some level of local adaptation has already occurred in this population. This study illuminates the process by which phenotypic plasticity allows local adaptation to new environments and its potential role in the pathway of incipient speciation.


2019 ◽  
Vol 194 (4) ◽  
pp. 516-528 ◽  
Author(s):  
Jeffrey E. Lane ◽  
Zenon J. Czenze ◽  
Rachel Findlay-Robinson ◽  
Erin Bayne

2019 ◽  
Vol 286 (1912) ◽  
pp. 20191623 ◽  
Author(s):  
Ming Liu ◽  
Dustin R. Rubenstein ◽  
Wei-Chung Liu ◽  
Sheng-Feng Shen

Bet-hedging—a strategy that reduces fitness variance at the expense of lower mean fitness among different generations—is thought to evolve as a biological adaptation to environmental unpredictability. Despite widespread use of the bet-hedging concept, most theoretical treatments have largely made unrealistic demographic assumptions, such as non-overlapping generations and fixed or infinite population sizes. Here, we extend the concept to consider overlapping generations by defining bet-hedging as a strategy with lower variance and mean per capita growth rate across different environments. We also define an opposing strategy—the rising-tide—that has higher mean but also higher variance in per capita growth. These alternative strategies lie along a continuum of biological adaptions to environmental fluctuation. Using stochastic Lotka–Volterra models to explore the evolution of the rising-tide versus bet-hedging strategies, we show that both the mean environmental conditions and the temporal scales of their fluctuations, as well as whether population dynamics are discrete or continuous, are crucial in shaping the type of strategy that evolves in fluctuating environments. Our model demonstrates that there are likely to be a wide range of ways that organisms with overlapping generations respond to environmental unpredictability beyond the classic bet-hedging concept.


2017 ◽  
Vol 121 (2) ◽  
pp. 367-375 ◽  
Author(s):  
Wolfgang Lewandrowski ◽  
Todd E Erickson ◽  
Emma L Dalziell ◽  
Jason C Stevens

Sign in / Sign up

Export Citation Format

Share Document