Effect of mouth rinses on optical properties of CAD‐CAM materials used for laminate veneers and crowns

Author(s):  
Rafat Sasany ◽  
Goknil Ergun‐Kunt ◽  
Burak Yilmaz
2012 ◽  
Vol 107 (5) ◽  
pp. 300-308 ◽  
Author(s):  
Tariq F. Alghazzawi ◽  
Jack Lemons ◽  
Perng-Ru Liu ◽  
Milton E. Essig ◽  
Gregg M. Janowski

2018 ◽  
Vol 19 (4) ◽  
pp. 230-233
Author(s):  
Adrian Mihai Varvară ◽  
◽  
Ralph Boutros ◽  
Anca Ştefania Mesaroş ◽  
Elena Bianca Varvară ◽  
...  

Photonics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 115
Author(s):  
Zeinab Ebrahimpour ◽  
Humberto Cabrera ◽  
Fahimeh Ahmadi ◽  
Asghar Asgari ◽  
Joseph Niemela

In this work, time-resolved thermal lens and beam deflection methods were applied to determine the thermo-optical properties of Er3+ doped sulfophosphate glass in which different concentrations of Titanium dioxide (TiO2) nanoparticles (NPs) were embedded. Thermal diffusivity (D), thermal conductivity (κ), and the temperature coefficient of the optical path length (ds/dT) were determined as a function of NPs concentrations. Moreover, the growth of TiO2 NPs inside the amorphous glass matrix was evidenced by Transmission Electron Microscopy (TEM) images as well as through optical effects such as refractive index change of the glass. The outcomes indicated relatively high values for D and κ as well as a low ds/dT as required for most optical components used for laser media. The addition of TiO2 NPs with concentration of dopants up to 0.6 mol% improved the optical properties of the glass samples but did not affect its thermal properties. The results indicate that the enhanced optical and thermal performance of the proposed co-doped glass fits the quality standards for materials used in photonic devices.


2018 ◽  
Vol 119 (3) ◽  
pp. 455-460 ◽  
Author(s):  
Taylan Sari ◽  
Cagri Ural ◽  
Emir Yüzbasioglu ◽  
Ibrahim Duran ◽  
Seda Cengiz ◽  
...  
Keyword(s):  
Cad Cam ◽  

2021 ◽  
Author(s):  
RG Fonseca ◽  
RC Peńa ◽  
R Simóes ◽  
AC Ramos ◽  
LN Dovigo

SUMMARY Little is known about the impact of bleaching on the optical properties of computer-aided design and computer-aided manufactured (CAD-CAM) monolithic materials. The aim of the present study was to evaluate the effect of one session of in-office bleaching on stain removal, staining susceptibility, translucency, and whiteness variations of CADCAM monolithic materials. Disks were fabricated from Lava Ultimate (LU), Vita Enamic (VE), Vita Suprinity (VS), and IPS e.max CAD (IPS). A spectrophotometer was used to register Commission Internationale de l’Eclairage L*a*b* coordinates. For stain removal, 80 specimens from each material were assessed at baseline (R0) and after immersion in deionized water or coffee for 365 days followed or not by bleaching with 40% hydrogen peroxide (R1). For staining susceptibility, 80 specimens from each material were analyzed at baseline (R0’), and after having been bleached or not and immersed in deionized water or coffee (R1’). Both analyses were calculated as the color difference (ΔE00) between R1-R0 and R1’-R0’, respectively. Differences in translucency (ΔTP00) and whiteness (ΔWID) between R1-R0 and R1’-R0’ were also calculated. Data were analyzed by three-way ANOVA and the Games-Howell post hoc test (α=0.05). Clinical significance was based on 50%:50% perceptibility and acceptability thresholds for ΔE00, ΔTP00 and ΔWID, respectively. Surfaces were analyzed by scanning electron microscopy. Coffee increased ΔE00 in LU, VE, and VS, and decreased their translucency and whiteness, whereas the IPS had only its whiteness affected. Bleaching after immersion in coffee decreased ΔE00 in LU and VE, and increased translucency and whiteness of LU, VE, and VS. No effect was observed on IPS. Bleaching before immersion in coffee decreased translucency of LU, but within the acceptable interval, while VE exhibited lower ΔE00, and became more translucent and less dark. Both VS and IPS were not affected. One session of in-office bleaching benefited optical properties of the previously stained LU, VE, and VS, without increasing their susceptibility to staining or adversely providing clinically unacceptable variations in their translucency and whiteness. All variations exhibited by the IPS were below the perceptible threshold.


2021 ◽  
Author(s):  
khaled Bataineh ◽  
assem Al Alkarasneh

Abstract Objective The purpose of this study is to estimate the fatigue life of five polycrystalline zirconia CAD/CAM ceramic materials used for posterior restoration. This study presents the first time methodology to translate raw data obtained from laboratory test into useful data to predict the clinical life of dental restoration. Methods A typical model for the first molar restored crown is built and transferred into finite element software ANSYS 18.1 flor execution FEA. The materials are: two Y-TZP zirconia (LAVA (LVs), and EVEREST (KVs); IPS e.max CAD; Suprinity PC; and Celtra Duo. Two types of loads are applied, axial load and axial load followed by the sliding motion of lower jaw. The fatigue resistance of various restorative materials is determined. Results Experimental findings show that all the samples have fractured between cusps at the same location, which is slightly off the symmetry fissure plane. For crowns made of LAVA and EVEREST, the life is longer than 10 years under an axial load of 1000 N, while the lives for IPS e.max CAD; Suprinity PC; and Celtra Duo were longer than 10 years under an axial load of 185 N. The life of all-ceramic crown materials was predicted by FEA and found to conform to previous experimental and clinical observations. Conclusion Crowns made of Y-TZP zirconia has superior fatigue resistance compared to other ceramic CAD/CAM materials.


2019 ◽  
Vol 09 (02) ◽  
pp. 57-63
Author(s):  
Sushmita V. Palanisamy ◽  
Chethan Hegde

Abstract Background Contemporary dentistry is advancing toward computer-aided design/ computer-aided manufacturing (CAD/CAM) technology. But the budding dentists are unaware about the advancement. This survey aims at detecting the level of awareness among the undergraduate students and then correlating those results to modify the future curriculum. Objective The study aims (1) to assess the awareness among the dental undergraduate students and (2) to correlate the level of awareness among the third years, final years, and interns. Sample Selection Study sample consist of 300 students (third year students, final year students, and interns) of A. B. Shetty Memorial Institute of Dental Sciences, Mangalore, Karnataka, India. The information of the survey was collected with the help of a questionnaire. Results More than 70% of the students were aware about the basic functioning of CAD/CAM unit and approximately 74% of the students were unaware about the materials used to fabricate the prosthesis using CAD/CAM technology.


2019 ◽  
Vol 45 (4) ◽  
pp. 442-452 ◽  
Author(s):  
N Ilie ◽  
G Furtos

Clinical Relevance Light transmission through dental materials and tooth structure has direct clinical implication on such factors as selecting an appropriate curing technique during a restorative process. SUMMARY Introduction: This study aims to quantify and compare the amount of light that passes through seven different types of direct and indirect restorative materials comprising light-cured resin based composites (regular and bulk-fill), computer-aided design/computer-aided manufacturing (CAD/CAM) restoratives such as resin based composites, poly(methyl methacrylate) (PMMA) resin, leucite glass-ceramic, lithium silicate glass-ceramic, feldspar ceramic, and the natural tooth structure. Methods and Materials: Individual sets (n=6) of plane-parallel test specimens (2 mm) of 32 restorative materials belonging to the aforementioned seven material types and the tooth structure were prepared. Within the analyzed materials, one leucite glass-ceramic and one lithium disilicate glass-ceramic were considered in two different translucencies. In addition, two light-cured resin composites, one CAD/CAM resin composite, and one lithium disilicate glass-ceramic were considered in two different shades. Optical properties (transmittance, T; absorbance, A; and opacity, O) of each material were calculated from the relationship between incident and transmitted irradiance [I(d)] using a violet-blue light-curing unit. Incident and transmitted irradiance were assessed in real time on a spectrophotometer. A multivariate analysis (general linear model) assessed the effects of various parameters on the optical properties. Results: A very strong influence of the parameter material was identified on I(d) (p<0.001; partial eta squared, ηP2=0.953), T (p<0.001; ηP2=0.951), A (p<0.001; ηP2=0.925), and O (p<0.001; ηP2=0.886), while the effect of the parameter material type was not significant (p=0.079, p=0.05, p=0.05, and p=0.051, respectively). Light attenuation differed significantly by material within each shade category and by shade category within the analyzed material. Conclusions: Attenuation of light through restorative materials and tooth structure is high (59.9% to 94.9%); thus, deficits in polymerization are difficult to compensate for by additional light exposure at the end of the restorative process.


Materials ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 381 ◽  
Author(s):  
Roxana-Diana Vasiliu ◽  
Sorin Daniel Porojan ◽  
Mihaela Ionela Bîrdeanu ◽  
Liliana Porojan

Dental ceramic restorations are widely spread nowadays due to their aesthetics and biocompatibility. In time, the colour and structure of these ceramic materials can be altered by aging processes. How does artificial aging affect the optical and surface roughness of ceramics? This study aims to assess the effect of thermocycling, surface treatments and microstructure upon translucency, opalescence and surface roughness on CAD-CAM and heat-pressed glass-ceramic. Forty-eight samples (1.5 mm thickness) were fabricated from six types of A2 MT ceramic: heat-pressed and milled glass-ceramic (feldspathic, lithium disilicate and zirconia reinforced lithium silicate). The samples were obtained respecting the manufacturer’s instructions. The resulted surfaces (n = 96) were half glazed and half polished. The samples were subjected to thermocycling (10,000 cycles) and roughness values (Ra and Rz), colour coordinates (L*, a*, b*) and microstructural analyses were assessed before and after thermocycling. Translucency (TP) and opalescence (OP) were calculated. Values were statistically analysed using ANOVA test (one way). TP and OP values were significantly different between heat-pressed and milled ceramics before and also after thermocycling (p < 0.001). Surface treatments (glazing and polishing) had a significant effect on TP and OP and surface roughness (p < 0.05). The heat-pressed and milled zirconia reinforced lithium silicate glass-ceramic experienced a loss in TP and OP. Ra and Rz increased for the glazed samples, TP and OP decreased for all the samples after thermocycling. Microstructural analyse revealed that glazed surfaces were more affected by the thermocycling and especially for the zirconia reinforced lithium silicate ceramic. Optical properties and surface roughness of the chosen ceramic materials were affected by thermocycling, surface treatments and microstructural differences. The least affected of the ceramics was the lithium disilicate ceramic heat-pressed polished and glazed.


Sign in / Sign up

Export Citation Format

Share Document