Mass transfer kinetics and process optimization of osmotic dehydration of Kinnow mandarin ( Citrus reticulata ) peel

Author(s):  
Balpreet Kaur ◽  
Priya Rana ◽  
Kandi Sridhar
2010 ◽  
Vol 45 (11) ◽  
pp. 2281-2289 ◽  
Author(s):  
Giovana D. Mercali ◽  
Isabel C. Tessaro ◽  
Caciano P. Z. Noreña ◽  
Lígia D. F. Marczak

2018 ◽  
Vol 21 (0) ◽  
Author(s):  
Fernanda Rosa Assis ◽  
Rui Manuel Santos Costa de Morais ◽  
Alcina Maria Miranda Bernardo de Morais

Abstract Physalis was osmotically dehydrated with 60 °Bx sucrose or sorbitol solutions at 60 °C and with a mass ratio of sample to solution of 1:4, at atmospheric pressure or under vacuum at 150 mbar. The Crank’s, Peleg’s and Page’s models were tested to describe the mass transfer kinetics for water loss (WL) and solids gain (SG). The effective diffusivities of both water and solute were around 10-11 m2 s-1 under all conditions. Peleg’s model presented the best fit. The use of sorbitol as the osmotic agent resulted in an increase in the WL rate. In experiments with sucrose solutions, a higher WL was obtained under vacuum than at atmospheric pressure. The SG was particularly low during osmotic dehydration. Thus, the use of sorbitol as the osmotic agent was shown to be a promising alternative to sucrose.


2010 ◽  
Vol 96 (4) ◽  
pp. 498-504 ◽  
Author(s):  
Jefferson L.G. Corrêa ◽  
Leila M. Pereira ◽  
Gláucia S. Vieira ◽  
Míriam D. Hubinger

Foods ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2286
Author(s):  
Mohamed Ghellam ◽  
Oscar Zannou ◽  
Charis M. Galanakis ◽  
Turki M. S. Aldawoud ◽  
Salam A. Ibrahim ◽  
...  

Autumn olive fruits were osmo-dehydrated in sucrose solution at 70 °C under vacuum and atmospheric pressure. The mass transfer kinetics data were applied to the models of Azuara, Crank, Page, and Peleg. The Peleg model was the best-fitted model to predict the water loss and solid gain of both treatments. The vacuum application decreased the effective diffusivities from 2.19 × 10−10 to 1.55 × 10−10 m2·s−1 for water loss and from 0.72 × 10−10 to 0.62 × 10−10 m2·s−1 for sugar gain. During the osmotic dehydration processes, the water activity decreased and stabilized after 5 h, while the bulk densities increased from 1.04 × 103 to 1.26 × 103 kg/m3. Titratable acidity gradually reduced from 1.14 to 0.31% in the atmospheric pressure system and from 1.14 to 0.51% in the vacuum system. pH increased significantly in both systems. Good retention of lycopene was observed even after 10 h of treatments. For the color parameters, the lightness decreased and stabilized after 30 min. In comparison, the redness and yellowness increased in the first 30 min and gradually decreased towards the initial levels in the fresh fruit.


Sign in / Sign up

Export Citation Format

Share Document