scholarly journals Remineralization of natural early caries lesions in vitro by P11-4 monitored with photothermal radiometry and luminescence

2017 ◽  
Vol 8 (4) ◽  
pp. e12257 ◽  
Author(s):  
Joshua D. Silvertown ◽  
Bonny P. Y. Wong ◽  
Koneswaran S. Sivagurunathan ◽  
Stephen H. Abrams ◽  
Jennifer Kirkham ◽  
...  
2020 ◽  
Vol 11 (2) ◽  
Author(s):  
Mona Zeitouny ◽  
Frédéric Cuisinier ◽  
Hervé Tassery ◽  
Hussein Fayyad-Kazan
Keyword(s):  

2019 ◽  
Vol 44 (5) ◽  
pp. E234-E243 ◽  
Author(s):  
L Al Dehailan ◽  
EA Martinez-Mier ◽  
GJ Eckert ◽  
F Lippert

SUMMARY Most currently marketed fluoride varnishes (FVs) have not been evaluated for their effectiveness in preventing dental caries. The objective of this study was to investigate the anticaries efficacy, measured as fluoride release into artificial saliva (AS); change in surface microhardness of early enamel caries lesions; and enamel fluoride uptake (EFU) of 14 commercially available FVs and two control groups. Bovine enamel specimens (5×5 mm) were prepared and assigned to 18 groups (n=12). Early caries lesions were created in the specimens and characterized using Vickers microhardness (VHNlesion). FV was applied to each group of specimens. Immediately afterward, specimens were incubated in 4 mL of AS for 18 hours, which were collected and renewed every hour for the first six hours. AS samples were analyzed for fluoride using an ion-specific electrode. Specimens were then brushed for 20 seconds with toothpaste slurry and subjected to pH cycling consisting of a four-hour/day acid challenge and one-minute treatments with 1100 ppm F dentifrice for five days. Microhardness was measured following pH cycling (VHNpost). EFU was determined using microbiopsy. Acid resistance (eight-hour demin challenge) was performed after pH cycling, and microhardness was measured (VHNart) and compared with baseline values to test the FV impact after pH cycling. One-way analysis of variance was used for data analysis (α=0.05). FVs differed in their release characteristics (mean ± SD ranged from 14.97 ± 2.38 μg/mL to 0.50 ± 0.15 μg/mL), rehardening capability (mean ± SD ranged from 24.3 ± 15.1 to 11.7 ± 12.7), and ability to deliver fluoride to demineralized lesions (mean ± SD ranged from 3303 ± 789 μg/cm3 to 707 ± 238 μg/cm3). Statistically significant but weak linear associations were found between ΔVHN(post – lesion), EFU, and fluoride release (correlations 0.21-0.36). The results of this study demonstrated that differences in FV composition can affect their efficacy in in vitro conditions.


2018 ◽  
Vol 52 (1-2) ◽  
pp. 129-138 ◽  
Author(s):  
Jonathan E. Creeth ◽  
Ritu Karwal ◽  
Anderson T. Hara ◽  
Domenick T. Zero

This study aimed to determine the effect of zinc ions and F concentration in a dentifrice on remineralization of early caries lesions in situ and on resistance to subsequent demineralization. This was a single-center, 6-period, 6-product, blinded (examiner, subject, analyst), randomized (n = 62), crossover study. Products (all NaF) were: 0, 250, 1,150 and 1,426 ppm F (dose-response controls), “Zn-A” (0.3% ZnCl2, 1,426 ppm F), and “Zn-B” (as Zn-A, with high-foaming surfactants) in a conventional silica base. Subjects wore palatal appliances holding partially demineralized bovine enamel specimens. They brushed their teeth with 1.5 g test dentifrice (25 s), then swished the slurry ensuring even exposure of specimens (95 s), expectorated, and rinsed (15 mL water, 10 s). After 4 h intraoral remineralization, specimens were removed and acid-challenged in vitro. Surface microhardness (SMH), measured pre-experimental, post-initial acid exposure, post-remineralization, and post-second acid exposure, was used to calculate recovery (SMHR), net acid resistance (NAR), and a new, specifically demineralization-focused calculation, “comparative acid resistance” (CAR). Enamel fluoride uptake (EFU) was also measured. For the F dose-response controls, all measures showed significant relationships with dentifrice F concentration (p < 0.0001). The presence of zinc counteracted the ability of F to promote remineralization in this model. Compared to the 1,426 ppm F control, the zinc formulations gave reduced SMHR, EFU, and NAR (all p < 0.0001); however, they showed evidence of increased CAR (Zn-A: p = 0.0040; Zn-B: p = 0.0846). Products were generally well tolerated. In this study, increasing dentifrice F concentration progressively increased in situ remineralization and demineralization resistance of early caries enamel lesions. Zinc ions reduced remineralization but could increase demineralization resistance.


Biofouling ◽  
2021 ◽  
pp. 1-12
Author(s):  
Cácia Signori ◽  
Tamires Timm Maske ◽  
Vitor Henrique Digmayer Romero ◽  
Maximiliano Sérgio Cenci

Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 300
Author(s):  
Hani M. Nassar ◽  
Frank Lippert

Developing artificial caries lesions with varying characteristics is needed to adequately study caries process in vitro. The objective of this study was to investigate artificial caries lesion characteristics after secondary demineralization protocol containing theobromine and fluoride. Sixty bovine enamel slabs (4 × 3 mm) were demineralized using a Carbopol-containing protocol for 6 days. A baseline area (2 × 3 mm) was protected with acid-resistant nail varnish, after which specimens were exposed for 24 h to a secondary demineralization protocol containing acetic acid plus one of four fluoride/theobromine combinations (n = 15): theobromine (50 or 200 ppm) and fluoride (0 or 1 ppm). Specimens were sectioned and analyzed using transverse microradiography for changes in mineral content, lesion depth, and surface layer mineralization. Data was analyzed using paired t-test and analysis of variance followed by Bonferroni test at 0.05 significance level. After secondary demineralization, fluoride-containing groups had significantly deeper lesions (p = 0.002 and 0.014) compared to the group with 0 ppm fluoride and 50 ppm theobromine. Mineral content and lesion depth were significantly different compared to baseline for all groups. Theobromine did not show an added effect on mineral uptake. Theobromine-containing groups exhibited particularly deep lesions with a more uniform mineral profile in the presence of fluoride.


1988 ◽  
Vol 67 (3) ◽  
pp. 577-581 ◽  
Author(s):  
Y. Jima ◽  
T. Koulourides

This in vitro investigation studied the remineralization of experimental caries lesions in bovine enamel by use of three methods: (1) surface microhardness, (2) microradiography, and (3) abrasion biopsy for mineral density and fluoride content. The lesions were produced by a two-day exposure to 0.01 mol/L lactic acidlsodium hydroxide buffer partially saturated with 3.0 mmol/L Ca, 1.8 mmol/L P, in 1% CMC, at pH 4.0 and 37°C. The lesions were exposed to a remineralizing solution containing 3.0 mmol/L Ca, 1.8 mmol/L P, and 3 ppm F in 1% CMC at pH 7.0 and 37°C for two, six, and ten days, with solution changes every two days. The data derived from the three methods are presented in sequence from the baseline and at days two, six, and ten of the remineralizing treatment. Microhardness measurements showed hardness recoveries of 35.9, 78.9, and 87.5%, respectively. Microradiography suggested complete recovery with the ten-day remineralization. Abrasion biopsy of successive 10-μm layers to a depth of 100 μm indicated 15.2, 39.8, and 68.8% mineral density recoveries, with fluoride content of the surface layer increasing from a baseline of 300 ppm to 4600, 9000, and 9800 ppm F for the 2, 6, 10 days of remineralization, respectively. Subsequent acid-etching of thin sections from the ten-day-remineralized specimens showed that the fluoride-enriched remineralized area was more resistant to acid dissolution than was the underlying nonnal enamel.


2018 ◽  
Vol 7 (6) ◽  
pp. 509-520 ◽  
Author(s):  
Amitis Vieira Costa e Silva ◽  
Joás Araújo Teixeira ◽  
Cláudia C.B.O. Mota ◽  
Emery Clayton Cabral Correia Lins ◽  
Paulo Correia de Melo Júnior ◽  
...  

AbstractBackgroundNanosilver fluoride (NSF) was developed as an alternative in the prevention of dental caries.PurposeThe aim of this study was to test the remineralizing action of NSF on incipient enamel caries and its antimicrobial action on the acid production and adhesion of Streptococcus mutans.MethodsDeciduous enamel fragments were treated with sodium fluoride (NaF), NSF and deionized water. Microhardness, fluorescence spectroscopy and optical coherence tomography imaging were performed on each specimen before chemical caries induction, after caries induction and after 14 days of pH cycling. The treated enamel fragments were also placed into test tubes containing bacterial suspension and saliva. The pH readings and quantification of the adhered microorganisms to the dental enamel were determined. Analysis of variance, Kruskal-Wallis, Mann-Whitney, Tukey and mixed linear regression model were applied.ResultsNSF and NaF were effective in enamel remineralization, with a statistically significant difference (p<0.001) to deionized water, and they had no statistically significant difference between themselves (p>0.005). NSF had greater effectiveness compared to NaF in preventing decreases of pH and adhesion of S. mutans to the enamel surface, with statistically significant (p<0.001) differences.ConclusionNSF may be more effective than conventional fluorides in treating incipient caries lesions due to its remineralization and antibacterial actions.


2012 ◽  
Vol 13 (4) ◽  
pp. 425-430 ◽  
Author(s):  
Shiny Benjamin ◽  
Roshni LNU ◽  
Sabeena Susan Thomas ◽  
Mohan Thomas Nainan

ABSTRACT Objective Remineralization is an effective treatment that may stop or reverse early tooth decay. Grape seed extract (GSE) is the potential remineralizing agent under investigation. Materials and methods Sound human tooth sections were obtained from the cervical portion of the root and stored in demineralizing solution at 37°C for 96 hours to induce artificial root caries lesions. The sections were divided into four treatment groups including 6.5% grape seed extract, sodium monofluorophosphate (220 ppm) with 0.05% calcium glycerophosphate, 0.5% calcium glycerophosphate and control (no treatment). An in vitro pH cycling model was used to cycle the demineralized specimens through treatment solutions, acidic buffer and neutral buffer for 8 days at 6 cycles per day. Subsequently, they were evaluated using confocal laser scanning microscope. Data were analyzed using analysis of variance (p < 0.05). Results GSE revealed less demineralization and more remineralization compared with other groups. Conclusion GSE promotes remineralization of artificial root caries lesions. Clinical significance The search for the perfect remineralizing agent continues to this day. GSE could be a welcome addition to the remineralization armamentarium. Abbreviations and acronyms GSE: Grape seed extract; ppm: Parts per million; CaGP: Calcium glycerophosphate; CLSM: Confocal laser scanning microscope; ANOVA: Analysis of variance; PA: Proanthocyanidin; CEJ: Cementoenamel junction; mM: Millimole; CaCl2.2H2O: Calcium chloride dihydrate; KH2PO4: Potassium dehydrate phosphate; K2HPO4: Dipotassium phosphate; dH2O: Deionized water; w/v: Weight by volume; ROD: Relative optical density; nm: Nanometer; SD: Standard deviation. How to cite this article Benjamin S, Roshni, Thomas SS, Nainan MT. Grape Seed Extract as a Potential Remineralizing Agent: A Comparative in vitro Study. J Contemp Dent Pract 2012;13(4):425-430.


2020 ◽  
Vol 11 (2) ◽  
pp. 160-166
Author(s):  
Mohammad Javad Moghaddas ◽  
Horieh Moosavi ◽  
Sara Yaghoubirad ◽  
Nasim Chiniforush

Introduction: The purpose of this study was to compare the effect of the bioactive glass, the glass ionomer, and the Erbium YAG laser as liners on the remineralization of the affected dentin. Methods: The present study was conducted on 64 healthy extracted human molars divided into 4 groups, 1 control group and 3 experimental groups. After artificially inducing dentinal caries lesions, each of the experimental groups was applied to the cavity floor and then restored with a composite. The samples were stored after thermocycling in an incubator for two months. Finally, the hardness of the cavity floor was measured at 3 depths of 20, 50 and 100 μm by the Vickers microhardness tester. The dentin conditions underneath the liners were also evaluated with FESEM. Statistical analysis was performed by two-way ANOVA and the post-hoc Games-Howell test (P<0.05). Results: Among the groups, the lowest microhardness value was in the control group (P<0.05) except at a depth of 100 μm; therefore, there was no significant difference between the control group and the bioactive glass (P>0.05). The laser group had the highest microhardness value, which was significantly different from the control group (P<0.05). There was a significant difference between the laser and bioactive glass (P<0.05), except at a depth of 20 μm. The laser and glass ionomer had only a significant difference at a depth of 100 μm (P<0.05). The microhardness value induced by glass ionomer was higher than bioactive glass, which in no depth was significant (P>0.05). Partial dentinal tubule occlusion was observed with FESEM in each of the experimental groups as compared to the control group. Conclusion: The microhardness values were higher in all groups than in the control group. The laser might be more successful in remineralization than the other ones.


Sign in / Sign up

Export Citation Format

Share Document