scholarly journals X‐ray microfocus computed tomography: a powerful tool for structural and functional characterisation of 3D printed dosage forms

2020 ◽  
Vol 277 (3) ◽  
pp. 135-139
Author(s):  
C.I. GIOUMOUXOUZIS ◽  
O.L. KATSAMENIS ◽  
D.G. FATOUROS
Polymers ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1154 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Fuh ◽  
Lee

Additive manufacturing (commonly known as 3D printing) is defined as a family of technologies that deposit and consolidate materials to create a 3D object as opposed to subtractive manufacturing methodologies. Fused deposition modeling (FDM), one of the most popular additive manufacturing techniques, has demonstrated extensive applications in various industries such as medical prosthetics, automotive, and aeronautics. As a thermal process, FDM may introduce internal voids and pores into the fabricated thermoplastics, giving rise to potential reduction on the mechanical properties. This paper aims to investigate the effects of the microscopic pores on the mechanical properties of material fabricated by the FDM process via experiments and micromechanical modeling. More specifically, the three-dimensional microscopic details of the internal pores, such as size, shape, density, and spatial location were quantitatively characterized by X-ray computed tomography (XCT) and, subsequently, experiments were conducted to characterize the mechanical properties of the material. Based on the microscopic details of the pores characterized by XCT, a micromechanical model was proposed to predict the mechanical properties of the material as a function of the porosity (ratio of total volume of the pores over total volume of the material). The prediction results of the mechanical properties were found to be in agreement with the experimental data as well as the existing works. The proposed micromechanical model allows the future designers to predict the elastic properties of the 3D printed material based on the porosity from XCT results. This provides a possibility of saving the experimental cost on destructive testing.


2019 ◽  
Vol 25 (2) ◽  
pp. 404-416 ◽  
Author(s):  
Tharmalingam Sivarupan ◽  
Mohamed El Mansori ◽  
Keith Daly ◽  
Mark Noel Mavrogordato ◽  
Fabrice Pierron

Purpose Micro-focus X-ray computed tomography (CT) can be used to quantitatively evaluate the packing density, pore connectivity and provide the basis for specimen derived simulations of gas permeability of sand mould. This non-destructive experiment or following simulations can be done on any section of any size sand mould just before casting to validate the required properties. This paper aims to describe the challenges of this method and use it to simulate the gas permeability of 3D printed sand moulds for a range of controlling parameters. The permeability simulations are compared against experimental results using traditional measurement techniques. It suggests that a minimum volume of only 700 × 700 × 700 µm3 is required to obtain, a reliable and most representative than the value obtained by the traditional measurement technique, the simulated permeability of a specimen. Design/methodology/approach X-ray tomography images were used to reconstruct 3D models to simulate them for gas permeability of the 3D printed sand mould specimens, and the results were compared with the experimental result of the same. Findings The influence of printing parameters, especially the re-coater speed, on the pore connectivity of the 3D printed sand mould and related permeability has been identified. Characterisation of these sand moulds using X-ray CT and its suitability, compared to the traditional means, are also studied. While density and 3PB strength are a measure of the quality of the moulds, the pore connectivity from the tomographic images precisely relates to the permeability. The main conclusions of the present study are provided below. A minimum required sample size of 700 × 700 × 700 µm3 is required to provide representative permeability results. This was obtained from sand specimens with an average sand grain size of 140 µm, using the tomographic volume images to define a 3D mesh to run permeability calculations. Z-direction permeability is always lower than that in the X-/Y-directions due to the lower values of X-(120/140 µm) and Y-(101.6 µm) resolutions of the furan droplets. The anisotropic permeability of the 3D printed sand mould is mainly due to, the only adjustable, X-directional resolution of the furan droplets; the Y-directional resolution is a fixed distance, 102.6 µm, between the printhead nozzles and the Z-directional one is usually, 280 µm, twice the size of an average sand grain.A non-destructive and most representative permeability value can be obtained, using the computer simulation, on the reconstructed 3D X-ray tomography images obtained on a specific location of a 3D printed sand mould. This saves time and effort on printing a separate specimen for the traditional test which may not be the most representative to the printed mould. Originality/value The experimental result is compared with the computer simulated results.


2008 ◽  
Vol 79 (1) ◽  
pp. 013711 ◽  
Author(s):  
G. Kerckhofs ◽  
J. Schrooten ◽  
T. Van Cleynenbreugel ◽  
S. V. Lomov ◽  
M. Wevers

2021 ◽  
Vol 173 ◽  
pp. 110948
Author(s):  
Yu Chen ◽  
Oğuzhan Çopuroğlu ◽  
Claudia Romero Rodriguez ◽  
Fernando F. de Mendonca Filho ◽  
Erik Schlangen

2010 ◽  
Vol 6 ◽  
pp. 22023
Author(s):  
J. Gallier ◽  
F. Hubert ◽  
J.C. Robinet ◽  
P. Sardini ◽  
L. Caner

2021 ◽  
Vol 40 (4) ◽  
Author(s):  
Mohammad Reza Khosravani ◽  
Tamara Reinicke

A Correction to this paper has been published: 10.1007/s10921-020-00721-1


Sign in / Sign up

Export Citation Format

Share Document