MR Diffusion Properties of Cervical Spinal Cord as a Predictor of Progression to Multiple Sclerosis in Patients with Clinically Isolated Syndrome

2020 ◽  
Author(s):  
Marek Dostál ◽  
Miloš Keřkovský ◽  
Jakub Stulík ◽  
Josef Bednařík ◽  
Petra Praksová ◽  
...  

Diagnostics ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1424
Author(s):  
Esben Nyborg Poulsen ◽  
Anna Olsson ◽  
Stefan Gustavsen ◽  
Annika Reynberg Langkilde ◽  
Annette Bang Oturai ◽  
...  

Spinal cord lesions are included in the diagnosis of multiple sclerosis (MS), yet spinal cord MRI is not mandatory for diagnosis according to the latest revisions of the McDonald Criteria. We investigated the distribution of spinal cord lesions in MS patients and examined how it influences the fulfillment of the 2017 McDonald Criteria. Seventy-four patients with relapsing-remitting MS were examined with brain and entire spinal cord MRI. Sixty-five patients received contrast. The number and anatomical location of MS lesions were assessed along with the Expanded Disability Status Scale (EDSS). A Chi-square test, Fischer’s exact test, and one-sided McNemar’s test were used to test distributions. MS lesions were distributed throughout the spinal cord. Diagnosis of dissemination in space (DIS) was increased from 58/74 (78.4%) to 67/74 (90.5%) when adding cervical spinal cord MRI to brain MRI alone (p = 0.004). Diagnosis of dissemination in time (DIT) was not significantly increased when adding entire spinal cord MRI to brain MRI alone (p = 0.04). There was no association between the number of spinal cord lesions and the EDSS score (p = 0.71). MS lesions are present throughout the spinal cord, and spinal cord MRI may play an important role in the diagnosis and follow-up of MS patients.





Author(s):  
Talaat Ahmed Abd El Hameed Hassan ◽  
Ramy Edward Assad ◽  
Shaimaa Atef Belal

Abstract Background The aim of this study is to evaluate the potential application of MR diffusion tensor imaging (with calculation of fractional anisotropy (FA) values) in assessment of the spondylotic cervical spinal canal compromise and comparison with the information issued from conventional MR sequences for early detection of cervical spondylotic myelopathy (CSM). Thirty patients (11 males and 19 females) were included in this study; age ranged from 22 to 70 years (mean age = 44). All patients had conventional and diffusion tensor imaging (DTI) examinations of the cervical spine for detection and assessment of degree of cervical cord myelopathy. FA values of the whole cord circumference and at 3, 6, 9, 12 o’clock positions of the normal cord (opposite to C2), opposite to the most affected disc, and below the level of the most affected disc were measured. Results High statistically significant P values were obtained when comparing the FA values of the normal cord with the cord opposite to the most affected disc, the normal cord with the cord below the affected disc and the cord at the level of the most affected disc with the cord below the level of the most affected disc. Conclusions DTI of the cervical spinal cord with FA measurement in patients with cervical spondylosis helps in early detection of cervical cord compressive myelopathy prior to appearance of changes in conventional MRI, which can improve the clinical outcome and help in treatment plans.



2012 ◽  
Vol 81 (10) ◽  
pp. 2697-2701 ◽  
Author(s):  
Fernanda Miraldi Clemente Pessôa ◽  
Fernanda Cristina Rueda Lopes ◽  
João Victor Altamiro Costa ◽  
Soniza Vieira Alves Leon ◽  
Romeu Côrtes Domingues ◽  
...  


2017 ◽  
Vol 79 (2) ◽  
pp. 806-814 ◽  
Author(s):  
Samantha By ◽  
Robert L. Barry ◽  
Alex K. Smith ◽  
Bailey D. Lyttle ◽  
Bailey A. Box ◽  
...  




Brain ◽  
2020 ◽  
Vol 143 (10) ◽  
pp. 2973-2987 ◽  
Author(s):  
Russell Ouellette ◽  
Constantina A Treaba ◽  
Tobias Granberg ◽  
Elena Herranz ◽  
Valeria Barletta ◽  
...  

Abstract We used 7 T MRI to: (i) characterize the grey and white matter pathology in the cervical spinal cord of patients with early relapsing-remitting and secondary progressive multiple sclerosis; (ii) assess the spinal cord lesion spatial distribution and the hypothesis of an outside-in pathological process possibly driven by CSF-mediated immune cytotoxic factors; and (iii) evaluate the association of spinal cord pathology with brain burden and its contribution to neurological disability. We prospectively recruited 20 relapsing-remitting, 15 secondary progressive multiple sclerosis participants and 11 age-matched healthy control subjects to undergo 7 T imaging of the cervical spinal cord and brain as well as conventional 3 T brain acquisition. Cervical spinal cord imaging at 7 T was used to segment grey and white matter, including lesions therein. Brain imaging at 7 T was used to segment cortical and white matter lesions and 3 T imaging for cortical thickness estimation. Cervical spinal cord lesions were mapped voxel-wise as a function of distance from the inner central canal CSF pool to the outer subpial surface. Similarly, brain white matter lesions were mapped voxel-wise as a function of distance from the ventricular system. Subjects with relapsing-remitting multiple sclerosis showed a greater predominance of spinal cord lesions nearer the outer subpial surface compared to secondary progressive cases. Inversely, secondary progressive participants presented with more centrally located lesions. Within the brain, there was a strong gradient of lesion formation nearest the ventricular system that was most evident in participants with secondary progressive multiple sclerosis. Lesion fractions within the spinal cord grey and white matter were related to the lesion fraction in cerebral white matter. Cortical thinning was the primary determinant of the Expanded Disability Status Scale, white matter lesion fractions in the spinal cord and brain of the 9-Hole Peg Test and cortical thickness and spinal cord grey matter cross-sectional area of the Timed 25-Foot Walk. Spinal cord lesions were localized nearest the subpial surfaces for those with relapsing-remitting and the central canal CSF surface in progressive disease, possibly implying CSF-mediated pathogenic mechanisms in lesion development that may differ between multiple sclerosis subtypes. These findings show that spinal cord lesions involve both grey and white matter from the early multiple sclerosis stages and occur mostly independent from brain pathology. Despite the prevalence of cervical spinal cord lesions and atrophy, brain pathology seems more strongly related to physical disability as measured by the Expanded Disability Status Scale.



Sign in / Sign up

Export Citation Format

Share Document