Animal, feed and rumen fermentation attributes associated with methane emissions from sheep fed brassica crops

Author(s):  
Yuhua He ◽  
Xuezhao Sun ◽  
Peihua You
Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 166
Author(s):  
Pichad Khejornsart ◽  
Anusorn Cherdthong ◽  
Metha Wanapat

Alternative feed sources can be utilized to reduce enteric methane (CH4) emissions, a major greenhouse gas that contributes to global warming. This study aimed to evaluate the potential use of tropical plants to improve digestibility, reduce protozoal populations, improve rumen fermentation, and minimize methane emissions from ruminants. The plants considered herein grow in tropical climates, are easily accessible in large quantities, and are directly related to human food production. Nine plants that grow naturally in tropical climates were assessed. Plant supplementation substantially enhanced accumulative gas production at 24 h (p < 0.05). The apparent organic matter digestibility (AOMDvt) of the diet was not affected by five of the nine plants. With the addition of the plant material, ammonia nitrogen concentrations were reduced by up to 47% and methane concentrations were reduced by 54%. Five of the nine plant materials reduced methane production in terms of CH4/dry matter and CH4/digestibility of the organic matter by 15–35% and 8–24%, respectively. In conclusion, supplementation with plants with high tannin contents was shown to be a viable strategy for improving rumen fermentation, reducing protozoal populations, and limiting methane emissions. In this regard, the leaves of Piper sarmentosum, Acmella oleracea, Careya arborea, and Anacardium occidentale were especially promising.


2019 ◽  
Vol 20 (3) ◽  
pp. 155
Author(s):  
Said Mirza Pratama ◽  
Sitti Wajizah ◽  
Anuraga Jayanegara ◽  
Samadi Samadi

Animals are considered as source of protein should be improved their productivity with the minimum cost production. Agro-industrial by products have been used as animal feed to reduce feed cost. The purpose of this study is to evaluate agro-industrial by product in Aceh as potential local feed for ruminant animals based on chemical composition, fiber fraction and in vitro rumen fermentation. There were eight sources of agro-industrial by products (sago residues, coconut meal, soybean-ketchup by product, coffee pulp, cacao pod, sago tree, corncob, and rice brand) which were collected from 3 different locations in Aceh.  All agro-industrial by product samples were dried at 600C for 24 h and ground to pass a 1 mm sieve. Grounded samples were analyzed to determine chemical composition, fiber fractions and in vitro rumen fermentation. Incubation was conducted at temperature 390C for 48 h in water bath with three replicates. Data for in vitro rumen fermentation were statically calculated by using SPSS differences between treatments were stated (P≤0.05) by using Duncan Multiple Range Test (DMRT). The results indicated that agro industrial by product from coconut meal, ketchup residues, coffee by product, cacao by product, and rice brand can be used as source of protein and industrial by product from sago by product, sago tree and corncob can be used as source of energy. Neutral detergent  insoluble  CP (NDICP) and Acid detergent insoluble CP (ADICP)  were relatively high for sago by product, sago tree and rice brand but relatively low for cacao by product and corncob. The value of incubated pH for most feed samples was in the normal range. In vitro dry matter digestibility (IVDMD) and in vitro organic matter  digestibility (IVOMD) were significantly difference (P≤0.05) each agro-industrial by products with the highest for sago and the lowest for coffee by product. In conclusion, agro-industrial by products had a potential feed for ruminant animals both as protein and energy sources. However, feed ingredients with high fiber content and low degradability, further treatments such as physical, chemical and biological treatments were required to improve the feed quality. 


animal ◽  
2019 ◽  
Vol 13 (5) ◽  
pp. 975-982 ◽  
Author(s):  
M. Wang ◽  
R. Wang ◽  
M. Liu ◽  
K.A. Beauchemin ◽  
X.Z. Sun ◽  
...  

2019 ◽  
Vol 2019 ◽  
pp. 1-8
Author(s):  
Abedin Abdallah ◽  
Pei Zhang ◽  
Abdul-Halim Abubakari ◽  
Evera Elemba ◽  
Qingzhen Zhong ◽  
...  

This study was conducted to investigate the effects of Astragalus by-product (ABP) through dietary supplementation at different levels on performance, nutrient digestibility, rumen fermentation, blood metabolites, and immune response in sheep. Twenty-four Doper × Small Tail Han ewes (6-7 months of age; 29.07 ± 2.28 kg initial body weight) were randomly assigned to one of three treatments for a 47 d feeding period. Treatments consisted of the sheep diet supplemented with 0% ABP-control, 10% ABP, or 15% ABP of the diet (dry matter basis). Blood samples were collected on days 0, 15, 30, and 45 of the feeding period. APB supplementation did not affect growth performance and apparent digestibility of organic matter, crude protein, and acid detergent fibre (P>0.05). However, ether extract digestibility was decreased in the 10% ABP group and increased in the 15% ABP group (P<0.001), and both 10% ABP and 15% ABP decreased the neutral detergent fibre digestibility (P=0.005). Feeding ABP increased rumen pH (P<0.001) and ammonia N (P<0.001) and decreased concentrations of acetate (P=0.007) and propionate (P=0.001) which resultantly increased the acetate-to-propionate ratio (P<0.001) in ruminal fluid. There were no interaction effects between treatment and sampling time for plasma metabolites and immunity (P>0.05). However, inclusion of dietary 10% ABP decreased concentrations of plasma cholesterol (P=0.043). Also, plasma concentrations of low-density lipoprotein decreased on days 30 and 45 (P=0.017) of the feeding period. Metabolite concentrations of total protein, albumin, globulin, blood urea N, glucose, triglyceride, and high-density lipoprotein cholesterol and humoral immune indicators were not affected (P>0.05) by dietary ABP supplementation. The results suggest that ABP could be reclaimed through dietary inclusion in animal feed since it had beneficial effects on rumen fermentation patterns and lipid metabolism and had no adverse effects on performance and humoral immunity in sheep.


2017 ◽  
Vol 42 (4) ◽  
pp. 247 ◽  
Author(s):  
A. Jayanegara ◽  
N. Yantina ◽  
B. Novandri ◽  
E. B. Laconi ◽  
N. Nahrowi ◽  
...  

This experiment was aimed to evaluate chemical composition, in vitro rumen fermentation, digestibility and methane emissions of some insects, i.e. Jamaican field cricket (JFC), mealworm (MW) and black soldier fly larvae age 1 and 2 weeks (BSF1 and BSF2). Insect samples were oven-dried at 60oC for 24 h, and ground to pass a 1 mm sieve. The ground samples were used subsequently for chemical composition determination and in vitro rumen fermentation test. Incubation was carried out in a water bath maintained at 39 ºC for 48 h in three replicates. Results revealed that all insect meals contained high crude protein, i.e. above 40% DM. Proportions of neutral detergent insoluble CP (NDICP) and neutral detergent insoluble CP (ADICP) were high in the insect meals than that of soybean meal (SBM), and these were particularly very high in BSF2. All insect meals had lower IVDMD and IVOMD than that of SBM (P<0.05). All insect meals had lower methane emissions as compared to SBM at 12, 24 and 48 h (P<0.05). It can be concluded that insect meals are potential protein supplements and have low methane emissions in vitro. However, their digestibility is rather low and may limit their utilization.


PLoS ONE ◽  
2018 ◽  
Vol 13 (7) ◽  
pp. e0199840 ◽  
Author(s):  
Su Chui Len Candyrine ◽  
Mazrul Fahmi Mahadzir ◽  
Sani Garba ◽  
Mohammad Faseleh Jahromi ◽  
Mahdi Ebrahimi ◽  
...  

2020 ◽  
Vol 263 ◽  
pp. 114454
Author(s):  
Muhammed Adebayo Arowolo ◽  
Shan Yang ◽  
Min Wang ◽  
Jian Hua He ◽  
Chao Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document