scholarly journals In Vitro Screening of Plant Materials to Reduce Ruminal Protozoal Population and Mitigate Ammonia and Methane Emissions

Fermentation ◽  
2021 ◽  
Vol 7 (3) ◽  
pp. 166
Author(s):  
Pichad Khejornsart ◽  
Anusorn Cherdthong ◽  
Metha Wanapat

Alternative feed sources can be utilized to reduce enteric methane (CH4) emissions, a major greenhouse gas that contributes to global warming. This study aimed to evaluate the potential use of tropical plants to improve digestibility, reduce protozoal populations, improve rumen fermentation, and minimize methane emissions from ruminants. The plants considered herein grow in tropical climates, are easily accessible in large quantities, and are directly related to human food production. Nine plants that grow naturally in tropical climates were assessed. Plant supplementation substantially enhanced accumulative gas production at 24 h (p < 0.05). The apparent organic matter digestibility (AOMDvt) of the diet was not affected by five of the nine plants. With the addition of the plant material, ammonia nitrogen concentrations were reduced by up to 47% and methane concentrations were reduced by 54%. Five of the nine plant materials reduced methane production in terms of CH4/dry matter and CH4/digestibility of the organic matter by 15–35% and 8–24%, respectively. In conclusion, supplementation with plants with high tannin contents was shown to be a viable strategy for improving rumen fermentation, reducing protozoal populations, and limiting methane emissions. In this regard, the leaves of Piper sarmentosum, Acmella oleracea, Careya arborea, and Anacardium occidentale were especially promising.

2018 ◽  
Vol 18 (3) ◽  
pp. 753-767 ◽  
Author(s):  
Amina Boussaada ◽  
Rabah Arhab ◽  
Serena Calabrò ◽  
Raffaella Grazioli ◽  
Maria Ferrara ◽  
...  

Abstract The aim of the research was to evaluate the effect of three Eucalyptus globulus extracts rich in phenolic compounds, especially flavonoids, on rumen fermentation, methane (CH4) production, organic matter degradability and protozoa population using an in vitro gas production technique. Four concentrations (0, 50, 75 and 100 mg) of three Eucalyptus extracts (ethyl acetate, n-butanol and aqueous) were added to a diet of ruminants (forage: concentrate ratio 60:40) and incubated at 39°C under anaerobiosis with buffered rumen fluid. After 24 h, the fermentation fluid was analysed for ammonia-N and volatile fatty acids (VFA). Organic matter degradability (OMD) and protozoa were also determined; in vitro gas production was also recorded and CH4 concentration was measured. Compared to the control, CH4 production was significantly lower for ethyl acetate extract (P<0.05), but higher for n-butanol and aqueous extracts. Production of ammonia- N was lower in all Eucalyptus extracts (P<0.05). Propionate production (P<0.05) increased for ethyl acetate and n-butanol extracts, whereas no effect was registered for VFA, for all Eucalyptus extracts. Ethyl acetate extract decreased in vitro OMD (P<0.05), whereas n-butanol and aqueous extracts were comparable to the control. Protozoa population decreased (P<0.05) for all extracts in comparison with the control. Eucalyptus ethyl acetate extract might be promising to be used as a potent anti-methanogenic additive. Moreover, the assessment of the right dosage seems to be important to decrease methane production, without reducing feed nutritional value.


Agriculture ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1205
Author(s):  
Musen Wang ◽  
Fujin Zhang ◽  
Xinxin Zhang ◽  
Ying Yun ◽  
Lei Wang ◽  
...  

The objective of this work was to evaluate the pH, chemical composition, minerals, vitamins, and in vitro rumen fermentation characteristics of silage prepared with lucerne, sweet maize stalk (MS), and their mixtures. Freshly chopped lucerne and MS were combined in ratios of 100:0 (M0, control), 80:20 (M20), 60:40 (M40), 40:60 (M60), 20:80 (M80), and 0:100 (M100) on a fresh matter basis. Each treatment was prepared in triplicate, and a total of eighteen silos were fermented for 65 days. After 65 days of fermentation, the pH values in M0, M20, M40, M60, M80, and M100 silages were 5.47, 4.84, 4.23, 4.13, 3.79, and 3.61, respectively. As the MS proportion in the mixtures increased, silage K, Ca, P, Na, Fe, and Cu concentrations linearly decreased (p < 0.001) and so did vitamins B5 and K1 and α-tocopherol. In vitro rumen dry matter and organic matter degradability, pH, ammonia, total volatile fatty acid, and gas production linearly decreased (p < 0.01), while neutral detergent fiber concentration linearly increased (p < 0.001), with increasing proportion of MS. The in vitro dry matter and organic matter degradability rapidly decreased when the MS percentage was ≥60%. In conclusion, the M40 silage is the most suitable for livestock utilization in local forage production considering the balance of silage pH, nutritional quality, and in vitro ruminal fermentation characteristics.


2020 ◽  
Vol 8 (8) ◽  
pp. 1160 ◽  
Author(s):  
Jiangkun Yu ◽  
Liyuan Cai ◽  
Jiacai Zhang ◽  
Ao Yang ◽  
Yanan Wang ◽  
...  

This study was performed to explore the predominant responses of rumen microbiota with thymol supplementation as well as effective dose of thymol on rumen fermentation. Thymol at different concentrations, i.e., 0, 100 mg/L, 200 mg/L, and 400 mg/L (four groups × five replications) was applied for 24 h of fermentation in a rumen fluid incubation system. Illumina MiSeq sequencing was applied to investigate the ruminal microbes in addition to the examination of rumen fermentation. Thymol doses reached 200 mg/L and significantly decreased (p < 0.05) total gas production (TGP) and methane production; the production of total volatile fatty acids (VFA), propionate, and ammonia nitrogen, and the digestibility of dry matter and organic matter were apparently decreased (p < 0.05) when the thymol dose reached 400 mg/L. A thymol dose of 200 mg/L significantly affected (p < 0.05) the relative abundance of 14 genera of bacteria, three species of archaea, and two genera of protozoa. Network analysis showed that bacteria, archaea, and protozoa significantly correlated with methane production and VFA production. This study indicates an optimal dose of thymol at 200 mg/L to facilitate rumen fermentation, the critical roles of bacteria in rumen fermentation, and their interactions with the archaea and protozoa.


2014 ◽  
Vol 54 (10) ◽  
pp. 1770 ◽  
Author(s):  
P. N. Chatterjee ◽  
D. N. Kamra ◽  
N. Agarwal ◽  
A. K. Patra

Tropical plants rich in secondary metabolites have the potential to modulate rumen fermentation for more efficient food production with reduced environmental impact. In the present study after extensive screening, three tropical tree leaves (Bahunia variegata, Psidium guajava and Cannabis indica) and three herbs (Cinnamomum zeylanicum, Trachyspermum ammi and Cinnamomum tamala) were selected to evaluate their effect on buffalo rumen fermentation. Total gas production, substrate degradability, volatile fatty acid pattern and enzyme activities were not affected by any of the plants tested in this study. However, methane production was lowered (P ≤ 0.05) due to inclusion of P. guajava leaves. Anti-methanogenic/anti-protozoal metabolites present in tropical plants seem to be better extracted by ethanol solvent and accordingly the best performing plant i.e. different levels of P. guajava extract was used for further evaluation. Both the methane inhibition and defaunating action of ethanol extract of P. guajava were found to be dose dependent. In conclusion, leaves of P. guajava appear to be a promising plant feed additive for decreasing methane production without affecting feed degradability in the rumen.


2021 ◽  
Vol 51 (2) ◽  
pp. 271-279
Author(s):  
M.R. Kekana ◽  
D. Luseba ◽  
M.C. Muyu

Garlic contains secondary metabolites with antimicrobial properties that can alter nutrient digestibility and rumen fermentation, similar to other antimicrobial products. The objectives of the study were to evaluate the effects of garlic powder and garlic juice on in vitro nutrient digestibility, rumen fermentation, and gas production. The treatments consisted of control with no additives, garlic powder, and garlic juice at 0.5 ml and 1 ml. The digestibility of dry matter, crude protein and neutral detergent fibre were determined after 48 hours incubation. Rumen ammonia nitrogen and volatile fatty acids were determined at 12 hours and 24 hours incubation. The cumulative gas production was recorded periodically over 48 hours. The in vitro dry matter disappearance decreased with 1 ml of garlic juice compared with control. The crude protein degradability in garlic powder and garlic juice was lower than in control. Volatile fatty acids increased in all treatments. Individual volatile fatty acids were significantly different, especially propionate, whereas the acetate to propionate ratio was reduced by garlic juice, and ammonia nitrogen was reduced by garlic powder and 0.5 ml of garlic juice. The cumulative gas production increased significantly with both levels of garlic juice. The addition of garlic juice at 0.5 mL/100 ml could enhance the production of propionate, and reduce the acetate to propionate ratio, implying that the supply of hydrogen for methanogens was limited.


2019 ◽  
Vol 24 (2) ◽  
pp. 68
Author(s):  
Sumudu Chathurika ◽  
Sathya Sujani ◽  
Ariyathilaka Manawadu ◽  
Thakshala Seresinhe

<p class="abstrak2">Recently the utilization of biological feed additives over chemical feed additives in animal feeds have increased. The objective of the present study was to evaluate the effect of supplementing wild guinea grass (panicum maximum) with two plant species, artocarpus heterophyllus (jack leaves; ah) and tridax procumbens (Tp) containing plant secondary metabolites tannin and saponin, respectively and the enzyme product dyadic cellulase (Ce) and yeast (Ye). For each suplement two levels of treatments were tested. In plant-based suplements 20 (Aht1, Tpt1) and 30% (Aht2 and Tpt2) substituted the base substrate. The enzyme was applied as 10 µl (Cet1) and 20 µl (Cet2) and yeast as 4 mg (Yet1) and 6 mg (Yet2). the experimental design was a randomized complete block design (rcbd) and the period of in vitro rumen fermentation incubation was 72 hrs. All treatments significantly (P &lt; 0.05) enhanced the in vitro gas production (Ivgp) compared with the control. Treatments of ah and ce significantly (P &lt; 0.05) improved the in vitro rumen dry matter degradability (ivrdmd). All treatments significantly (P&lt;0.05) suppressed the ruminal protozoa population as compared to the control. Ammonia nitrogen (Nh3-N) production was not significantly (P&gt;0.05) influenced with supplements. in conclusion, treatments enhanced the rumen fermentation in means of enhanced ivgp, ivrdmd and reduced protozoa numbers.</p>


2013 ◽  
Vol 152 (4) ◽  
pp. 686-696 ◽  
Author(s):  
H. J. YANG ◽  
H. ZHUANG ◽  
X. K. MENG ◽  
D. F. ZHANG ◽  
B. H. CAO

SUMMARYThe effects of melamine on gas production (GP) kinetics, methane (CH4) production and fermentation of diets differing in forage content (low-forage (LF) diet: 200 g/kg and high-forage (HF) diet: 800 g/kg) by rumen micro-organismsin vitrowere studied using batch cultures. Rumen contents were collected from three Simmental×Luxi crossbred beef cattle. Melamine was added to the incubation bottles to achieve final concentration of 0 (control), 2, 6, 18, 54, 162 and 484 mg/kg of each diet. Cumulative GP was continuously measured in an automated gas recording instrument during 72 h of incubation, while fermentation gas end-products were collected to determine molar proportions of carbon dioxide (CO2), CH4and hydrogen gas (H2) in manually operated batch cultures. Differences in GP kinetics and fermentation gases were observed in response to the nature of the diets incubated. Although melamine addition did not affect GP kinetics and fermentation gas pattern compared to the control, the increase of melamine addition stimulated the yield of CH4by decreasing CO2, especially during the fermentation of the HF diet. The concentrations of ammonia nitrogen (N), amino acid N and microbial N in culture fluids were greater in the fermentation of LF- than HF diets, and these concentrations were increased by the increase of melamine addition after 72-h fermentation. The concentrations of total volatile fatty acids (VFA) were greater in HF than LF diets. The addition of melamine decreased total VFA concentrations and this response was greater in HF than LF diet fermentations. Melamine addition did not affect molar proportions of acetate, butyrate, propionate and valerate compared with the control; however, branched-chain VFA production, which was lower in the HF than the LF diet, was increased by the melamine addition, especially in the HF diet fermentation. The ratio of non-glucogenic to glucogenic acids was lower in the HF than the LF diet, but it was not affected by melamine addition. In brief, the greater reduction in the rate and extent of rumen fermentation found for the HF diet in comparison with the LF diet suggested that rumen fermentation rate and extentin vitrodepended mainly on the nature of the incubated substrate, and that they could be further inhibited by the increase of melamine addition.


2015 ◽  
Vol 3 (3) ◽  
pp. 260-266
Author(s):  
H. Selmi ◽  
Z. Abdelwahed ◽  
A. Rouissi ◽  
M. Hanene ◽  
G. Tibaoui ◽  
...  

In order to ensure nutritional characterization of some fodder shrubs and test the effect of inoculum source (sheep and goats) on their digestibility. Four shrubs “Acacia cyanophylla, Atriplex halimus, Opuntia ficus-indica. Var.inermis(cactus) and Medicago arborea” were tested in vitro by incubating them firstly into the rumen fluid of sheep then into goat’s inoculums. The evaluation included chemical composition, total gas production (CO2 and CH4), the prediction of organic matter digestibility (OMD), metabolizable energy (ME), the concentration of total volatile fatty acids (SCFA) and metering ammonia nitrogen (NH3-N). Ruminal fermentation of Opuntia ficus-indica and Medicago arborea have identified more total gas amonts than Atriplex halimus and Acacia cyanophylla. Digestibility of organic matter, metabolisable energy and the concentration of total volatil fatty acids were higher in the case of Opuntia ficus-indica compared to other shrubs. The lowest values were recorded in the Atriplex halimus. The concentration of ammonia nitrogen (NH3-N), it turned out that Opuntia ficus-indica is the food with less protein concentration (140 and 270.66 mmol/syringe) respectively for sheep and goats. In against part, the Medicago arborea is presented as a good protein source recording of ammonia nitrogen concentration (214.67 mmol/syringe) into the sheep’s rumen and (494.67 mmol/syringe) into the goats inoculum. The source of the inoculum showed a highly significant effect (p > 0.05).


2016 ◽  
Vol 56 (3) ◽  
pp. 224 ◽  
Author(s):  
J. Guyader ◽  
M. Tavendale ◽  
C. Martin ◽  
S. Muetzel

The objective of this work was to study the in vitro dose-response effect of nitrate (0, 1, 2, 4 and 6 mM) on metabolic hydrogen distribution between rumen fermentation end products. Three 48-h incubations were conducted using bovine rumen contents as an inoculum, and a mixture of hay and concentrate (50 : 50) as a substrate. Total gas production and composition (methane and hydrogen) were automatically analysed throughout the incubations. Volatile fatty acid and ammonium concentrations were analysed from samples taken after 48 h of incubation. Total gas production was decreased with the highest dose of nitrate (P = 0.002). Methane emissions linearly decreased as the nitrate dose increased (P = 0.005). Kinetics of methane emissions showed that metabolic hydrogen removal via nitrate reduction occurred mainly during the first 10 h of incubation. Gaseous hydrogen production was similar among treatments, despite higher hydrogen emissions for nitrate concentrations >4 mM. Concentrations and proportions of volatile fatty acids were not affected by treatments. The proportion of unaccounted metabolic hydrogen was positive for all treatments, and tended to linearly increase as the nitrate dose increased. In this in vitro work, we confirmed that nitrate is an efficient methane-mitigating compound in the rumen. We also suggest that nitrate or its reduced forms have a direct inhibiting effect towards methanogens, as indicated by the release of gaseous hydrogen and the high efficiency of methane mitigation. However, high nitrate concentrations also decrease overall fermentation.


2021 ◽  
Vol 888 (1) ◽  
pp. 012053
Author(s):  
A D Saputra ◽  
Kusmartono ◽  
Mashudi ◽  
P H Ndaru

Abstract This study was designed to evaluate effects of using different levels of cassava meal in a concentrate cassava peel diet on chemical composition, in vitro gas production (IVGP) and rumen fermentation. The treatments applied were: A=cassava peel (20%)+ cassava meal (70%)+cassava leaves (5%)+moringa leaves (5%); B=cassava peel (20%)+ cassava meal (60%)+cassava leaves (10%)+moringa leaves (10%); C=cassava peel (20%)+ cassava meal (50%)+cassava leaves (15%)+moringa leaves (15%) cassava meal; D=cassava peel (20%)+ cassava meal (40%)+cassava leaves (20%)+moringa leaves (20%); E=cassava peel (20%)+ cassava meal (30%)+cassava leaves (25%)+moringa leaves (25%) with 3 replications arranged in a Randomized Block Design (RBD). The result showed that the increasing levels of cassava meal in the ration significantly increased organic matter (OM) and nitrogen-free extract (NFE) content (P<0.05), but reduced crude protein (CP), ether extract (EE), crude fiber (CF), neutral detergent fiber (NDF), and acid detergent fiber (ADF) contents. Similarly, a significant increased (P<0.01) were found in values of cumulative in vitro gas production, dry matter and organic matter digestibility, but decreased NH3 concentration (P<0.05) due to the increased of cassava meal. It is concluded that increasing levels of cassava meal in concentrate has led to higher OM content of the ration and being available for rumen fermentation.


Sign in / Sign up

Export Citation Format

Share Document