scholarly journals Long-term changes in regional vegetation cover along the west coast of southern Norway: The importance of human impact

2018 ◽  
Vol 29 (3) ◽  
pp. 404-415 ◽  
Author(s):  
Kari Loe Hjelle ◽  
Lene S. Halvorsen ◽  
Lisbeth Prøsch-Danielsen ◽  
Shinya Sugita ◽  
Aage Paus ◽  
...  



2016 ◽  
Vol 47 (4) ◽  
pp. 782-798
Author(s):  
Inese Latkovska ◽  
Elga Apsīte ◽  
Didzis Elferts

The ice regime of rivers is considered a sensitive indicator of climate change. This paper summarises the results of research on the long-term changes in the ice regime parameters under changing climate conditions and their regional peculiarities in Latvia from 1945 to 2012. The ice cover duration on Latvian rivers has decreased during recent decades. The research results demonstrated that there is a positive trend as regards the formation of the ice cover and in 31.8% of the cases the trend is statistically significant at p < 0.05. As regards the breaking up of ice, there is a statistically significant negative trend in 93.2% of the cases at p < 0.05. This indicates an earlier ice break-up date, which in turn, displays a strong correlation with the increase of the air temperature. The same pattern applies to the reduction of the length of ice cover (a statistically significant trend in 86.4% of the cases at p < 0.05). In approximately 60% of the cases, there is a statistically significant reduction of the ice thickness. The estimated winter severity index indicates warmer winters over the last 20 years as well as regional differences in the west–east direction.





2020 ◽  
Vol 20 (11) ◽  
pp. 7103-7123
Author(s):  
Susann Tegtmeier ◽  
Elliot Atlas ◽  
Birgit Quack ◽  
Franziska Ziska ◽  
Kirstin Krüger

Abstract. Halogenated very short-lived substances (VSLSs), such as bromoform (CHBr3), can be transported to the stratosphere and contribute to the halogen loading and ozone depletion. Given their highly variable emission rates and their short atmospheric lifetimes, the exact amount as well as the spatio-temporal variability of their contribution to the stratospheric halogen loading are still uncertain. We combine observational data sets with Lagrangian atmospheric modelling in order to analyse the spatial and temporal variability of the CHBr3 injection into the stratosphere for the time period 1979–2013. Regional maxima with mixing ratios of up to 0.4–0.5 ppt at 17 km altitude are diagnosed to be over Central America (1) and over the Maritime Continent–west Pacific (2), both of which are confirmed by high-altitude aircraft campaigns. The CHBr3 maximum over Central America is caused by the co-occurrence of convectively driven short transport timescales and strong regional sources, which in conjunction drive the seasonality of CHBr3 injection. Model results at a daily resolution reveal isolated, exceptionally high CHBr3 values in this region which are confirmed by aircraft measurements during the ACCENT campaign and do not occur in spatially or temporally averaged model fields. CHBr3 injection over the west Pacific is centred south of the Equator due to strong oceanic sources underneath prescribed by the here-applied bottom-up emission inventory. The globally largest CHBr3 mixing ratios at the cold point level of up to 0.6 ppt are diagnosed to occur over the region of India, Bay of Bengal, and Arabian Sea (3); however, no data from aircraft campaigns are available to confirm this finding. Inter-annual variability of stratospheric CHBr3 injection of 10 %–20 % is to a large part driven by the variability of coupled ocean–atmosphere circulation systems. Long-term changes, on the other hand, correlate with the regional sea surface temperature trends resulting in positive trends of stratospheric CHBr3 injection over the west Pacific and Asian monsoon region and negative trends over the east Pacific. For the tropical mean, these opposite regional trends balance each other out, resulting in a relatively weak positive trend of 0.017±0.012 ppt Br per decade for 1979–2013, corresponding to 3 % Br per decade. The overall contribution of CHBr3 together with CH2Br2 to the stratospheric halogen loading accounts for 4.7 ppt Br, in good agreement with existing studies, with 50 % and 50 % being injected in the form of source and product gases, respectively.



2019 ◽  
Author(s):  
Susann Tegtmeier ◽  
Elliot Atlas ◽  
Birgit Quack ◽  
Franziska Ziska ◽  
Kirstin Krüger

Abstract. We combine available observational data sets with Lagrangian atmospheric modelling in order to analyze the spatial and temporal variability of the CHBr3 injection into the stratosphere. Regional maxima with mixing ratios of up to 0.4–0.5 ppt at 17 km altitude are diagnosed to be over Central America (1) and over the Maritime Continent/West Pacific (2), both of which are confirmed by high-altitude aircraft campaigns. The CHBr3 maximum over Central America is caused by the co-occurrence of convectively-driven short transport time scales and strong regional sources, which in conjunction drive the seasonality of CHBr3 injection. Model results at a daily resolution reveal isolated, exceptionally high CHBr3 values in this region which are confirmed by measurements during the ACCENT campaign and do not occur in spatially or temporally averaged model fields. CHBr3 injection over the West Pacific is centered south of the equator due to strong oceanic sources underneath prescribed by the here applied bottom-up emission inventory. The globally strongest stratospheric CHBr3 injection of up to 0.6 ppt is diagnosed to occur over the region of India, Bay of Bengal and Arabian Sea (3), however, no data from aircraft campaigns are available to confirm this finding. Interannual variability of stratospheric CHBr3 injection of 10–20 % is to a large part driven by the variability of coupled ocean-atmosphere circulation systems. Long-term changes, on the other hand, correlate with the regional SST trends resulting in positive trends of stratospheric CHBr3 injection over the West Pacific and Asian monsoon region and negative trends over the East Pacific. For the tropical mean, these opposite regional trends balance each other out resulting in a relatively weak positive trend of 0.017 ± 0.012 ppt Br/dec for 1979–2013, corresponding 3 % Br/dec. The overall contribution of CHBr3 together with CH2Br2 to the stratospheric halogen loading accounts for 4.7 ppt Br, in good agreement with existing studies, with 50 %/50 % being injected in form of source and product gases, respectively.



2019 ◽  
Vol 36 (1) ◽  
pp. 30 ◽  
Author(s):  
Natasha K. Nahirnick ◽  
Maycira Costa ◽  
Sarah Schroeder ◽  
Tara Sharma


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2289 ◽  
Author(s):  
Alain Ulazia ◽  
Markel Penalba ◽  
Arkaitz Rabanal ◽  
Gabriel Ibarra-Berastegi ◽  
John Ringwood ◽  
...  

The wave energy resource in the Chilean coast shows particularly profitable characteristics for wave energy production, with relatively high mean wave power and low inter-annual resource variability. This combination is as interesting as unusual, since high energetic locations are usually also highly variable, such as the west coast of Ireland. Long-term wave resource variations are also an important aspect when designing wave energy converters (WECs), which are often neglected in resource assessment. The present paper studies the long-term resource variability of the Chilean coast, dividing the 20th century into five do-decades and analysing the variations between the different do-decades. To that end, the ERA20C reanalysis of the European Centre for Medium-Range Weather Forecasts is calibrated versus the ERA-Interim reanalysis and validated against buoy measurements collected in different points of the Chilean coast. Historical resource variations off the Chilean coast are compared to resource variations off the west coast in Ireland, showing a significantly more consistent wave resource. In addition, the impact of historical wave resource variations on a realistic WEC, similar to the Corpower device, is studied, comparing the results to those obtained off the west coast of Ireland. The annual power production off the Chilean coast is demonstrated to be remarkably more regular over the 20th century, with variations of just 1% between the different do-decades.





2019 ◽  
Vol 36 (11) ◽  
pp. 2205-2219 ◽  
Author(s):  
Li Zhai ◽  
Blair Greenan ◽  
Richard Thomson ◽  
Scott Tinis

AbstractA storm surge hindcast for the west coast of Canada was generated for the period 1980–2016 using a 2D nonlinear barotropic Princeton Ocean Model forced by hourly Climate Forecast System Reanalysis wind and sea level pressure. Validation of the modeled storm surges using tide gauge records has indicated that there are extensive areas of the British Columbia coast where the model does not capture the processes that determine the sea level variability on intraseasonal and interannual time scales. Some of the discrepancies are linked to large-scale fluctuations, such as those arising from major El Niño and La Niña events. By applying an adjustment to the hindcast using an ocean reanalysis product that incorporates large-scale sea level variability and steric effects, the variance of the error of the adjusted surges is significantly reduced (by up to 50%) compared to that of surges from the barotropic model. The importance of baroclinic dynamics and steric effects to accurate storm surge forecasting in this coastal region is demonstrated, as is the need to incorporate decadal-scale, basin-specific oceanic variability into the estimation of extreme coastal sea levels. The results improve long-term extreme water level estimates and allowances for the west coast of Canada in the absence of long-term tide gauge records data.



Sign in / Sign up

Export Citation Format

Share Document