scholarly journals Historical Evolution of the Wave Resource and Energy Production off the Chilean Coast over the 20th Century

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2289 ◽  
Author(s):  
Alain Ulazia ◽  
Markel Penalba ◽  
Arkaitz Rabanal ◽  
Gabriel Ibarra-Berastegi ◽  
John Ringwood ◽  
...  

The wave energy resource in the Chilean coast shows particularly profitable characteristics for wave energy production, with relatively high mean wave power and low inter-annual resource variability. This combination is as interesting as unusual, since high energetic locations are usually also highly variable, such as the west coast of Ireland. Long-term wave resource variations are also an important aspect when designing wave energy converters (WECs), which are often neglected in resource assessment. The present paper studies the long-term resource variability of the Chilean coast, dividing the 20th century into five do-decades and analysing the variations between the different do-decades. To that end, the ERA20C reanalysis of the European Centre for Medium-Range Weather Forecasts is calibrated versus the ERA-Interim reanalysis and validated against buoy measurements collected in different points of the Chilean coast. Historical resource variations off the Chilean coast are compared to resource variations off the west coast in Ireland, showing a significantly more consistent wave resource. In addition, the impact of historical wave resource variations on a realistic WEC, similar to the Corpower device, is studied, comparing the results to those obtained off the west coast of Ireland. The annual power production off the Chilean coast is demonstrated to be remarkably more regular over the 20th century, with variations of just 1% between the different do-decades.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 920
Author(s):  
Yue Hong ◽  
Irina Temiz ◽  
Jianfei Pan ◽  
Mikael Eriksson ◽  
Cecilia Boström

Wave energy converters (WECs), which are designed to harvest ocean wave energy, have recently been improved by the installation of numerous conversion mechanisms; however, it is still difficult to find an appropriate method that can compromise between strong environmental impact and robust performance by transforming irregular wave energy into stable electrical power. To solve this problem, an investigation into the impact of varied wave conditions on the dynamics of WECs and to determine an optimal factor for WECs to comply with long-term impacts was performed. In this work, we researched the performance of WECs influenced by wave climates. We used a permanent magnet linear generator (PMLG)-based WEC that was invented at Uppsala University. The damping effect was first studied with a PMLG-type WEC. Then, a group of sea states was selected to investigate their impact on the power production of the WEC. Two research sites were chosen to investigate the WEC’s annual energy production as well as a study on the optimal damping coefficient impact. In addition, we compared the WEC’s energy production between optimal damping and constant damping under a full range of sea states at both sites. Our results show that there is an optimal damping coefficient that can achieve the WEC’s maximum power output. For the chosen research sites, only a few optimal damping coefficients were able to contribute over 90% of the WEC’s annual energy production. In light of the comparison between optimal and constant damping, we conclude that, for specific regions, constant damping might be a better choice for WECs to optimize long-term energy production.


2014 ◽  
Vol 71 ◽  
pp. 665-678 ◽  
Author(s):  
Bryson R.D. Robertson ◽  
Clayton E. Hiles ◽  
Bradley J. Buckham

2018 ◽  
Vol 224 ◽  
pp. 205-219 ◽  
Author(s):  
Markel Penalba ◽  
Alain Ulazia ◽  
Gabriel Ibarra-Berastegui ◽  
John Ringwood ◽  
Jon Sáenz

2011 ◽  
pp. 21-25
Author(s):  
Brendan Cahill

In theory, the energy that could be extracted from the oceans is well in excess of any current, or future, human requirements. While wave energy currently lags behind conventional, carbon based sources of power and other renewable sources of energy such as wind and solar, advances continue to be made. The developers of Wave Energy Converters (WECs), the devices that are designed to harness the power of ocean waves, require methods to compare and evaluate the wave energy resource at different locations in order to allow them to select the most suitable sites to achieve optimal power capture and economic performance from their installations. The focus of my Ph.D. research is towards developing new methods for characterizing the wave energy resource off the west coast of Ireland with reference to the potential power available and the performance of typical devices, and also to allow for the comparison of possible sites ...


2008 ◽  
Vol 21 (1) ◽  
pp. 22-39 ◽  
Author(s):  
Siegfried D. Schubert ◽  
Yehui Chang ◽  
Max J. Suarez ◽  
Philip J. Pegion

Abstract In this study the authors examine the impact of El Niño–Southern Oscillation (ENSO) on precipitation events over the continental United States using 49 winters (1949/50–1997/98) of daily precipitation observations and NCEP–NCAR reanalyses. The results are compared with those from an ensemble of nine atmospheric general circulation model (AGCM) simulations forced with observed SST for the same time period. Empirical orthogonal functions (EOFs) of the daily precipitation fields together with compositing techniques are used to identify and characterize the weather systems that dominate the winter precipitation variability. The time series of the principal components (PCs) associated with the leading EOFs are analyzed using generalized extreme value (GEV) distributions to quantify the impact of ENSO on the intensity of extreme precipitation events. The six leading EOFs of the observations are associated with major winter storm systems and account for more than 50% of the daily precipitation variability along the West Coast and over much of the eastern part of the country. Two of the leading EOFs (designated GC for Gulf Coast and EC for East Coast) together represent cyclones that develop in the Gulf of Mexico and occasionally move and/or redevelop along the East Coast producing large amounts of precipitation over much of the southern and eastern United States. Three of the leading EOFs represent storms that hit different sections of the West Coast (designated SW for Southwest coast, WC for the central West Coast, and NW for northwest coast), while another represents storms that affect the Midwest (designated by MW). The winter maxima of several of the leading PCs are significantly impacted by ENSO such that extreme GC, EC, and SW storms that occur on average only once every 20 years (20-yr storms) would occur on average in half that time under sustained El Niño conditions. In contrast, under La Niña conditions, 20-yr GC and EC storms would occur on average about once in 30 years, while there is little impact of La Niña on the intensity of the SW storms. The leading EOFs from the model simulations and their connections to ENSO are for the most part quite realistic. The model, in particular, does very well in simulating the impact of ENSO on the intensity of EC and GC storms. The main model discrepancies are the lack of SW storms and an overall underestimate of the daily precipitation variance.


Author(s):  
Tunde O. Aderinto ◽  
Francisco Haces-Fernandez ◽  
Hua Li

Although theoretical available wave energy is higher than most of ocean energy sources, the commercial utilization of wave energy is much slower than other ocean energy sources. The difficulty of integration with the electrical grid system and the challenges of the installation, operation and maintenance of large energy generation and transmission systems are the major reasons. Even though there are successfully tested models of wave energy converters, the fact that wave energy is directly affected by wave height and wave period makes the actual wave energy output with high variation and difficult to be predicted. And most of the previous studies on wave energy and its utilization have focused on the large scale energy production that can be integrated into a power grid system. In this paper, the authors identify and discuss stand-alone wave energy converter systems and facilities that are not connected to the electricity grid with focus on small scale wave energy systems as potential source of energy. For the proper identification, qualification and quantification of wave energy resource potential, wave properties such as wave height and period need to be characterized. This is used to properly determine and predict the probability of the occurrence of these wave properties at particular locations, which enables the choice of product design, installation, operation and maintenance to effectively capture wave energy. Meanwhile, the present technologies available for wave energy converters can be limited by location (offshore, nearshore or shoreline). Therefore, the potential applications of small scale stand-alone wave energy converter are influenced by the demand, location of the need and the appropriate technology to meet the identified needs. The paper discusses the identification of wave energy resource potentials, the location and appropriate technology suitable for small scale wave energy converter. Two simplified wave energy converter designs are created and simulated under real wave condition in order to estimate the energy production of each design.


Author(s):  
Sarah Gallagher ◽  
Roxana Tiron ◽  
Frederic Dias

The western coast of Ireland possesses one of the highest wave energy resources in the world and consequently is a promising location for the future deployment of Wave Energy Converters (WECs). Most wave climate studies for this region have focused primarily on the offshore area since it enjoys higher energy densities. However, recent studies have shown that nearshore locations offer a similar potential for the exploitation of wave energy as offshore sites [13]. Furthermore, the proximity of WEC devices to the shore will likely reduce losses in power transport, and facilitate access for maintenance activities. In this context, we analyse the wave climate over a ten year period for several nearshore sites off the Irish West Coast. The wave climate is estimated using a spectral wave model, WaveWatch III, forced with wind and spectral wave data from the ECMWF (European Centre for Medium Range Weather Forecast) operational archive. The wave model is validated with wave buoy data from intermediate to shallow depths (< 60 m). Our focus is on two aspects of the wave climate resource assessment. Firstly, we characterise the directionality of the wave energy resource (mean direction, directional spread) which affects the site selection, design and performance of nearshore WECs. Secondly, we discuss the climate data from the perspective of accessibility for maintenance. When selecting sites for the deployment of WECs, a balance needs to be found between two opposing criteria: the existence of sufficiently long, continuous time intervals of calm sea states (weather windows) which are necessary for maintenance activities to take place, and a high, consistent level of wave energy density, essential for economically viable wave energy extraction.


Sign in / Sign up

Export Citation Format

Share Document