scholarly journals Nutrient deposition enhances post‐fire survival in non‐N‐fixing savanna tree seedlings

Author(s):  
Varun Varma ◽  
Mahesh Sankaran
2017 ◽  
Author(s):  
Varan Varma ◽  
Arockia M Catherin ◽  
Mahesh Sankaran

AbstractIn mixed tree-grass ecosystems, tree recruitment is limited by demographic bottlenecks to seedling establishment arising from inter- and intra-life form competition, and disturbances such as fire. Enhanced nutrient availability resulting from anthropogenic nitrogen (N) and phosphorus (P) deposition can alter the nature of these bottlenecks by changing seedling growth and biomass allocation patterns, and lead to longer-term shifts in tree community composition if different plant functional groups respond differently to increased nutrient availability. However, the extent to which tree functional types characteristic of savannas differ in their responses to increased N and P availability remains unclear. We quantified differences in above- and belowground biomass, and root carbohydrate contents – parameters known to influence the ability of plants to compete, as well as survive and recover from fires – in seedlings of multiple N-fixing and non-N-fixing tree species characteristic of Indian savanna and dry-forest ecosystems to experimental N and P additions. N-fixers in our study were co-limited by N and P availability, while non-N-fixers were N limited. Although both functional groups increased biomass production following fertilisation, non-N-fixers were more responsive and showed greater relative increases in biomass with fertilisation than N-fixers. N-fixers had greater baseline investment in belowground resources and root carbohydrate stocks, and while fertilisation reduced root:shoot ratios in both functional groups, root carbohydrate content only reduced with fertilisation in non-N-fixers. Our results indicate that, even within a given system, plants belonging to different functional groups can be limited by, and respond differentially to, different nutrients, suggesting that long-term consequences of nutrient deposition are likely to vary across savannas contingent on the relative amounts of N and P being deposited in sites.


2018 ◽  
Author(s):  
Varun Varma ◽  
Mahesh Sankaran

AbstractNutrient deposition can modify plant growth rates and potentially alter the susceptibility of plants to disturbance events, while also influencing properties of disturbance regimes. In mixed tree-grass ecosystems, such as savannas and tropical dry forests, tree seedling growth rates strongly influence the ability of seedlings to survive fire (i.e. post-fire seedling survival), and hence, vegetation structure and tree community composition. However the effects of nutrient deposition on the susceptibility of recruiting trees to fire are poorly quantified. In a field experiment, seedlings of multiple N-fixing and non-N-fixing tropical dry forest tree species were exposed to nitrogen (N) and phosphorus (P) fertilisation, and fire. We quantified nutrient-mediated changes in a) mean seedling growth rates; b) growth rates of the fastest growing individuals and c) post-fire seedling survival. N-fixers had substantially higher baseline post-fire seedling survival, that was unaffected by nutrient addition. Fertilisation, especially with N, increased post-fire survival probabilities in non-N-fixers by increasing the growth rates of the fastest growing individuals. These results suggest that fertilisation can lead to an increase in the relative abundance of non-N-fixers in the resprout community, and thereby, alter the community composition of tropical savanna and dry forest tree communities in the long-term.


2019 ◽  
Vol 73 (2) ◽  
pp. 120-122
Author(s):  
Naoki Negishi ◽  
Katsuhiko Nakahama ◽  
Nobuyuki Urata ◽  
Toshiaki Tanabe

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomohiro Fujita

AbstractThis study examined the mechanisms of facilitation and importance of seed dispersal during establishment of forest tree species in an Afrotropical woodland. Seedling survival of Syzygium guineense ssp. afromontanum was monitored for 2.5 years at four different microsites in savannah woodland in Malawi (southeastern Africa) under Ficus natalensis (a potential nurse plant), Brachystegia floribunda (a woodland tree), Uapaca kirkiana (a woodland tree), and at a treeless site. The number of naturally established forest tree seedlings in the woodland was also counted. Additionally, S. guineense ssp. afromontanum seed deposition was monitored at the four microsites. Insect damage (9% of the total cause of mortality) and trampling by ungulates (1%) had limited impact on seedling survival in this area. Fire (43%) was found to be the most important cause of seedling mortality and fire induced mortality was especially high under U. kirkiana (74%) and at treeless site (51%). The rate was comparatively low under F. natalensis (4%) and B. floribunda (23%), where fire is thought to be inhibited due to the lack of light-demanding C4 grasses. Consequently, seedling survival under F. natalensis and B. floribunda was higher compared with the other two microsites. The seedling survival rate was similar under F. natalensis (57%) and B. floribunda (59%). However, only a few S. guineense ssp. afromontanum seedlings naturally established under B. floribunda (25/285) whereas many seedlings established under F. natalensis (146/285). These findings indicate that the facilitative mechanism of fire suppression is not the only factor affecting establishment. The seed deposition investigation revealed that most of the seeds (85%) were deposited under F. natalensis. As such, these findings suggest that in addition to fire suppression, dispersal limitations also play a role in forest-savannah dynamics in this region, especially at the community level.


Forests ◽  
2021 ◽  
Vol 12 (7) ◽  
pp. 939
Author(s):  
Yoko Watanabe ◽  
Kiyomi Hinata ◽  
Laiye Qu ◽  
Satoshi Kitaoka ◽  
Makoto Watanabe ◽  
...  

To elucidate changes in the defensive traits of tree seedlings under global environmental changes, we evaluated foliar defensive traits of the seedlings of successional trees, such as beech, oak, and magnolia grown in a natural-light phytotron. Potted seedlings were grown under the combination of two CO2 concentrations (360 vs. 720 ppm) and two nitrogen (N) treatments (4 vs. 15 kg N ha−1 yr−1) for two growing seasons using quantitative chemical analyses and anatomical method. We hypothesized that the effects of CO2 and N depend on the successional type, with late successional species providing greater defense of their leaves against herbivores, as this species exhibits determinate growth. Beech, a late successional species, responded the most to both elevated CO2 concentration (eCO2) and high N treatment. eCO2 and low N supply enhanced the defensive traits, such as the high leaf mass per area (LMA), high carbon to N ratio (C/N ratio), and increase in the concentrations of total phenolic and condensed tannin in agreement with the carbon–nutrient balance (CNB) hypothesis. High N supply decreased the C/N ratio due to the high N uptake in beech leaves. Oak, a mid–late successional species, exhibited different responses from beech: eCO2 enhanced the LMA, C/N ratio, and concentration of total phenolics of oak leaves, but only condensed tannin increased under high N supply. Magnolia did not respond to all treatments. No interactive effects were observed between CO2 and N supply in all species, except for the concentration of total phenolics in oak. Although the amounts of phenolic compounds in beech and oak varied under eCO2 and high N treatments, the distribution of these compounds did not change. Our results indicate that the changes in the defensive traits of forest tree species under eCO2 with N loading are related to the successional type.


Plant Disease ◽  
2013 ◽  
Vol 97 (6) ◽  
pp. 744-748 ◽  
Author(s):  
Jerry E. Weiland ◽  
Bryan R. Beck ◽  
Anne Davis

Pythium species are common soilborne oomycetes that occur in forest nursery soils throughout the United States. Numerous species have been described from nursery soils. However, with the exception of P. aphanidermatum, P. irregulare, P. sylvaticum, and P. ultimum, little is known about the potential for other Pythium species found in nursery soils to cause damping-off of tree seedlings. A greenhouse study was conducted to evaluate the pathogenicity and virulence of 44 Pythium isolates representing 16 species that were originally recovered from soil at three forest nurseries in Washington and Oregon. Seeds of Douglas-fir (Pseudotsuga menziesii) were planted into soil infested with each of the isolates. Seedling survival, the number of surviving seedlings with necrotic root lesions, and taproot length were evaluated 4 weeks later. Responses of Douglas-fir to inoculation varied significantly depending on Pythium species and isolate. Eight species (P. dissotocum, P. irregulare, P. aff. macrosporum, P. mamillatum, P. aff. oopapillum, P. rostratifingens, P. sylvaticum, and P. ultimum var. ultimum) significantly reduced the number of surviving seedlings compared to the noninoculated treatment. However, all Pythium species caused a greater percentage of seedlings to develop root lesions (total mean 40%) than was observed from noninoculated seedlings (17%). Taproot length varied little among Pythium treatments and was not a useful character for evaluating pathogenicity. Results confirm the ability of P. irregulare, P. mamillatum, and P. ultimum var. ultimum to cause damping-off of Douglas-fir seedlings, and are indicative that other species such as P. dissotocum, P. aff. macrosporum, P. aff. oopapillum, P. rostratifingens, and P. sylvaticum may also be responsible for seedling loss.


Sign in / Sign up

Export Citation Format

Share Document