scholarly journals Environmental effects on fine-scale spatial genetic structure in four Alpine keystone forest tree species

2018 ◽  
Vol 27 (3) ◽  
pp. 647-658 ◽  
Author(s):  
Elena Mosca ◽  
Erica A. Di Pierro ◽  
Katharina B. Budde ◽  
David B. Neale ◽  
Santiago C. González-Martínez

2014 ◽  
Vol 300 (7) ◽  
pp. 1671-1681 ◽  
Author(s):  
Rosane Garcia Collevatti ◽  
Raquel Estolano ◽  
Marina Lopes Ribeiro ◽  
Suelen Gonçalves Rabelo ◽  
Elizangela J. Lima ◽  
...  


PLoS ONE ◽  
2018 ◽  
Vol 13 (3) ◽  
pp. e0193501
Author(s):  
James R. Smith ◽  
Jaboury Ghazoul ◽  
David F. R. P. Burslem ◽  
Akira Itoh ◽  
Eyen Khoo ◽  
...  


2016 ◽  
Vol 167 (6) ◽  
pp. 316-324 ◽  
Author(s):  
Thomas Wohlgemuth ◽  
Anita Nussbaumer ◽  
Anton Burkart ◽  
Martin Moritzi ◽  
Ulrich Wasem ◽  
...  

Patterns and driving forces for seed production in forest tree species Why is the annual fruit production in forest tree species not constant, and which factors cause massive fruit production (seed mast year)? These and other related questions were already posed more than 100 years ago when tree breeding was economically beneficial. The questions have not been fully answered, yet. Rather, the same questions are studied again today as the climate is changing and the uncertainty about the continuation of forests at their current locations is growing. A 25 year long observation series on the variation of fruit production in Switzerland revealed a mean frequency of three years for mast seeding (full and medium mast) at low elevation on the Central Plateau in European beech (Fagus sylvatica), oak (Quercus petraea, Q. robur) and silver fir (Abies alba). In contrast, mast seed years of Norway spruce (Picea abies) occurred, on average, every sixth year. In 1992 and 2011, all four species synchronously showed mast seeding. The results are discussed in the light of different theories and new research findings. From the state of the current know ledge, we derive the need for long-term and fine-scale baseline data and present the new reporting and information webpage «mast web.ch». Here, volunteers can report observations on the fruit production of main tree species following a few simple criteria (citizen science approach). With this data, distribution maps on mass fructification levels will be made available and will serve for spatio-temporal fine-scale studies on mast seeding phenomena.



2014 ◽  
Vol 63 (1-6) ◽  
pp. 149-158 ◽  
Author(s):  
C. Z. Quiñones-Pérez ◽  
S. L. Simental-Rodríguez ◽  
C. Sáenz-Romero ◽  
J. P. Jaramillo-Correa ◽  
C. Wehenkel

Abstract In natural plant populations, the spatial genetic structure (SGS) is occasionally associated with evolutionary and ecological features such as the mating system, individual fitness, inbreeding depression and natural selection of the species of interest. The very rare Mexican P. chihuahuana tree community covers an area no more than 300 ha and has been the subject of several studies concerning its ecology and population genetics. The overall aim of most of these studies has been to obtain data to help design preservation and conservation strategies. However, analysis of the fine-scale SGS in this special forest tree community has not yet been conducted, which might help enrich the above mentioned conservation programs. In this study, we examined the SGS of this community, mostly formed by P. chihuahuana Martínez, Pinus strobiformis Ehrenberg ex Schlechtendah, Pseudotsuga menziesii (Mirb.) Franco, and Populus tremuloides Michx, in 14 localities at both the fine and large scales, with the aim of obtaining a better understanding of evolutionary processes. We observed a non-significant autocorrelation in fine-scale SGS, suggesting that the genetic variants of all four tree species are randomly distributed in space within each sampled plot of 50 x 50 m. At the larger scale, the autocorrelation was highly significant for P. chihuahuana and P. menziesii, probably as a result of insufficient gene flow due to the extreme population isolation and small sizes. For these two species our results provided strong support for the theory of isolation by distance.



Heredity ◽  
2001 ◽  
Vol 87 (4) ◽  
pp. 497-507 ◽  
Author(s):  
Bernd Degen ◽  
Henri Caron ◽  
Eric Bandou ◽  
Laurent Maggia ◽  
Marie Héléne Chevallier ◽  
...  


Biotropica ◽  
2011 ◽  
Vol 44 (5) ◽  
pp. 586-594 ◽  
Author(s):  
Tsuyoshi Harata ◽  
Satoshi Nanami ◽  
Takuo Yamakura ◽  
Shuhei Matsuyama ◽  
Lucy Chong ◽  
...  


2016 ◽  
Vol 32 (2) ◽  
pp. 135-145 ◽  
Author(s):  
Arthur Tavares de Oliveira Melo ◽  
Edivani Villaron Franceschinelli

Abstract:The Atlantic forest is the biome most severely affected by deforestation in Brazil. Cabralea canjerana spp. canjerana is a dioecious tree species with widespread distribution in the Neotropical region. This species is considered a model to ascertain population ecology parameters for endangered plant species from the Atlantic forest. Fine-scale spatial genetic structure and pollen-mediated gene flow are crucial information in landscape genetics and evolutionary ecology. A total of 192 adults and 121 offspring were sampled in seven C. canjerana populations in the Southern Minas Gerais State, Brazil, to assess whether pollen-mediated gene flow is able to prevent spatial genetic structure within and among Atlantic forest fragments. Several molecular ecology parameters were estimated using microsatellite loci. High levels of genetic diversity (HE = 0.732) and moderate population structure (θ = 0.133) were recorded. No significant association between kinship and spatial distance amongst individuals within each population (Sp = 0.000109) was detected. Current pollen-mediated gene flow occurs mainly within forest fragments, probably due to short-distance flights of the pollinator of C. canjerana, and also the forest fragmentation may have restricted flight distance. The high levels of genetic differentiation found amongst the seven sites sampled demonstrated how habitat fragmentation affects the gene flow process in natural areas.



Sign in / Sign up

Export Citation Format

Share Document