Adaptive divergence in bill morphology and other thermoregulatory traits is facilitated by restricted gene flow in song sparrows on the California Channel Islands

2021 ◽  
Author(s):  
Maybellene P. Gamboa ◽  
Cameron K. Ghalambor ◽  
T. Scott Sillett ◽  
Scott A. Morrison ◽  
W. Chris Funk
PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1411 ◽  
Author(s):  
Guillermo Castillo ◽  
Pedro L. Valverde ◽  
Laura L. Cruz ◽  
Johnattan Hernández-Cumplido ◽  
Guadalupe Andraca-Gómez ◽  
...  

Defensive traits exhibited by plants vary widely across populations. Heritable phenotypic differentiation is likely to be produced by genetic drift and spatially restricted gene flow between populations. However, spatially variable selection exerted by herbivores may also give rise to differences among populations. To explore to what extent these factors promote the among-population differentiation of plant resistance of 13 populations ofDatura stramonium, we compared the degree of phenotypic differentiation (PST) of leaf resistance traits (trichome density, atropine and scopolamine concentration) against neutral genetic differentiation (FST) at microsatellite loci. Results showed that phenotypic differentiation in defensive traits among-population is not consistent with divergence promoted by genetic drift and restricted gene flow alone. Phenotypic differentiation in scopolamine concentration was significantly higher thanFSTacross the range of trait heritability values. In contrast, genetic differentiation in trichome density was different fromFSTonly when heritability was very low. On the other hand, differentiation in atropine concentration differed from the neutral expectation when heritability was less than or equal to 0.3. In addition, we did not find a significant correlation between pair-wise neutral genetic distances and distances of phenotypic resistance traits. Our findings reinforce previous evidence that divergent natural selection exerted by herbivores has promoted the among-population phenotypic differentiation of defensive traits inD. stramonium.


2021 ◽  
Author(s):  
Maybellene P Gamboa ◽  
Cameron K Ghalambor ◽  
T Scott Sillett ◽  
W Chris Funk ◽  
Ross A Furbush ◽  
...  

Inferring the environmental selection pressures responsible for phenotypic variation is a challenge in adaptation studies as traits often have multiple functions and are shaped by complex selection regimes. We provide experimental evidence that morphology of the multifunctional avian bill is related to climate, not foraging efficiency, in song sparrows (Melospiza melodia) on the California Channel Islands. Our research builds on a study in song sparrow museum specimens that demonstrated a positive correlation between bill surface area and maximum temperature, suggesting a greater demand for dry heat dissipation in hotter, xeric environments. We sampled contemporary sparrow populations across three climatically distinct islands to test the alternate hypotheses that song sparrow bill morphology is either a product of vegetative differences with functional consequences for foraging efficiency or related to maximum temperature and, consequently, important for thermoregulation. Measurements of >500 live individuals indicated a significant, positive relationship between maximum temperature and bill surface area when correcting for body size. In contrast, maximum bite force, seed extraction time, and vegetation on breeding territories (a proxy for food resources) were not significantly associated with bill dimensions. While we cannot exclude the influence of foraging ability and diet on bill morphology, our results are consistent with the hypothesis that variation in song sparrows' need for thermoregulatory capacity across the northern Channel Islands selects for divergence in bill surface area.


2015 ◽  
Vol 29 (2) ◽  
pp. 241-252 ◽  
Author(s):  
W. C. Funk ◽  
M. A. Murphy ◽  
K. L. Hoke ◽  
E. Muths ◽  
S. M. Amburgey ◽  
...  

2020 ◽  
Author(s):  
Di Cui ◽  
Cuifeng Tang ◽  
Hongfeng Lu ◽  
Jinmei Li ◽  
Xiaoding Ma ◽  
...  

Abstract Background Understanding and identifying the factors responsible for genetic differentiation is of fundamental importance for efficient utilization and conservation of traditional rice landraces. In this study, we examined the spatial genetic differentiation of 594 individuals sampled from 28 locations in Yunnan Province, China, covering a wide geographic distribution and diverse growing conditions. All 594 accessions were studied using ten unlinked target genes and 48 microsatellite loci, and the representative 108 accessions from the whole collection were sampled for resequencing. Results The genetic diversity of rice landraces was quite different geographically and exhibited a geographical decline from south to north in Yunnan, China. Population structure revealed that the rice landraces could be clearly differentiated into japonica and indica groups, respectively. In each group, the rice accessions could be further differentiated corresponded to their geographic locations, including three subgroups from northern, southern and middle locations. We found more obvious internal geographic structure in the japonica group than in the indica group. In the japonica group, we found that genetic and phenotypic differentiation were strongly related to geographical distance, suggesting a pattern of isolation by distance (IBD); this relationship remained highly significant when we controlled for environmental effects, where the likelihood of gene flow is inversely proportional to the distance between locations. Moreover, the gene flow also followed patterns of isolation by environment (IBE) whereby gene flow rates are higher in similar environments. We detected 314 and 216 regions had been differentially selected between Jap-N and Jap-S, Ind-N and Ind-S, respectively, and thus referred to as selection signatures for different geographic subgroups. We also observed a number of significant and interesting associations between loci and environmental factors, which implies adaptation to local environment. Conclusion Our findings highlight the influence of geographical isolation and environmental heterogeneity on the pattern of the gene flow, and demonstrate that both geographical isolation and environment drives adaptive divergence play dominant roles in the genetic differentiation of the rice landraces in Yunnan, China as a result of limited dispersal.


Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Di Cui ◽  
Cuifeng Tang ◽  
Hongfeng Lu ◽  
Jinmei Li ◽  
Xiaoding Ma ◽  
...  

Abstract Background Understanding and identifying the factors responsible for genetic differentiation is of fundamental importance for efficient utilization and conservation of traditional rice landraces. In this study, we examined the spatial genetic differentiation of 594 individuals sampled from 28 locations in Yunnan Province, China, covering a wide geographic distribution and diverse growing conditions. All 594 accessions were studied using ten unlinked target genes and 48 microsatellite loci, and the representative 108 accessions from the whole collection were sampled for resequencing. Results The genetic diversity of rice landraces was quite different geographically and exhibited a geographical decline from south to north in Yunnan, China. Population structure revealed that the rice landraces could be clearly differentiated into japonica and indica groups, respectively. In each group, the rice accessions could be further differentiated corresponded to their geographic locations, including three subgroups from northern, southern and middle locations. We found more obvious internal geographic structure in the japonica group than in the indica group. In the japonica group, we found that genetic and phenotypic differentiation were strongly related to geographical distance, suggesting a pattern of isolation by distance (IBD); this relationship remained highly significant when we controlled for environmental effects, where the likelihood of gene flow is inversely proportional to the distance between locations. Moreover, the gene flow also followed patterns of isolation by environment (IBE) whereby gene flow rates are higher in similar environments. We detected 314 and 216 regions had been differentially selected between Jap-N and Jap-S, Ind-N and Ind-S, respectively, and thus referred to as selection signatures for different geographic subgroups. We also observed a number of significant and interesting associations between loci and environmental factors, which implies adaptation to local environment. Conclusions Our findings highlight the influence of geographical isolation and environmental heterogeneity on the pattern of the gene flow, and demonstrate that both geographical isolation and environment drives adaptive divergence play dominant roles in the genetic differentiation of the rice landraces in Yunnan, China as a result of limited dispersal.


2016 ◽  
Vol 113 (27) ◽  
pp. 7584-7589 ◽  
Author(s):  
Kexin Li ◽  
Liuyang Wang ◽  
Binyamin A. Knisbacher ◽  
Qinqin Xu ◽  
Erez Y. Levanon ◽  
...  

Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk–basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological–genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk–basalt divergence driving sympatric speciation.


Genes ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 435
Author(s):  
Thijs M. P. Bal ◽  
Alejandro Llanos-Garrido ◽  
Anurag Chaturvedi ◽  
Io Verdonck ◽  
Bart Hellemans ◽  
...  

There is a general and solid theoretical framework to explain how the interplay between natural selection and gene flow affects local adaptation. Yet, to what extent coexisting closely related species evolve collectively or show distinctive evolutionary responses remains a fundamental question. To address this, we studied the population genetic structure and morphological differentiation of sympatric three-spined and nine-spined stickleback. We conducted genotyping-by-sequencing and morphological trait characterisation using 24 individuals of each species from four lowland brackish water (LBW), four lowland freshwater (LFW) and three upland freshwater (UFW) sites in Belgium and the Netherlands. This combination of sites allowed us to contrast populations from isolated but environmentally similar locations (LFW vs. UFW), isolated but environmentally heterogeneous locations (LBW vs. UFW), and well-connected but environmentally heterogenous locations (LBW vs. LFW). Overall, both species showed comparable levels of genetic diversity and neutral genetic differentiation. However, for all three spatial scales, signatures of morphological and genomic adaptive divergence were substantially stronger among populations of the three-spined stickleback than among populations of the nine-spined stickleback. Furthermore, most outlier SNPs in the two species were associated with local freshwater sites. The few outlier SNPs that were associated with the split between brackish water and freshwater populations were located on one linkage group in three-spined stickleback and two linkage groups in nine-spined stickleback. We conclude that while both species show congruent evolutionary and genomic patterns of divergent selection, both species differ in the magnitude of their response to selection regardless of the geographical and environmental context.


2007 ◽  
Vol 9 (6) ◽  
pp. 1521-1532 ◽  
Author(s):  
Jim Provan ◽  
Gemma E. Beatty ◽  
Andrea M. Hunter ◽  
Robbie A. McDonald ◽  
Emma McLaughlin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document