scholarly journals Genetic differentiation and restricted gene flow in rice landraces from Yunnan, China: effects of isolation-by-distance and isolation-by-environment

Rice ◽  
2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Di Cui ◽  
Cuifeng Tang ◽  
Hongfeng Lu ◽  
Jinmei Li ◽  
Xiaoding Ma ◽  
...  

Abstract Background Understanding and identifying the factors responsible for genetic differentiation is of fundamental importance for efficient utilization and conservation of traditional rice landraces. In this study, we examined the spatial genetic differentiation of 594 individuals sampled from 28 locations in Yunnan Province, China, covering a wide geographic distribution and diverse growing conditions. All 594 accessions were studied using ten unlinked target genes and 48 microsatellite loci, and the representative 108 accessions from the whole collection were sampled for resequencing. Results The genetic diversity of rice landraces was quite different geographically and exhibited a geographical decline from south to north in Yunnan, China. Population structure revealed that the rice landraces could be clearly differentiated into japonica and indica groups, respectively. In each group, the rice accessions could be further differentiated corresponded to their geographic locations, including three subgroups from northern, southern and middle locations. We found more obvious internal geographic structure in the japonica group than in the indica group. In the japonica group, we found that genetic and phenotypic differentiation were strongly related to geographical distance, suggesting a pattern of isolation by distance (IBD); this relationship remained highly significant when we controlled for environmental effects, where the likelihood of gene flow is inversely proportional to the distance between locations. Moreover, the gene flow also followed patterns of isolation by environment (IBE) whereby gene flow rates are higher in similar environments. We detected 314 and 216 regions had been differentially selected between Jap-N and Jap-S, Ind-N and Ind-S, respectively, and thus referred to as selection signatures for different geographic subgroups. We also observed a number of significant and interesting associations between loci and environmental factors, which implies adaptation to local environment. Conclusions Our findings highlight the influence of geographical isolation and environmental heterogeneity on the pattern of the gene flow, and demonstrate that both geographical isolation and environment drives adaptive divergence play dominant roles in the genetic differentiation of the rice landraces in Yunnan, China as a result of limited dispersal.

2020 ◽  
Author(s):  
Di Cui ◽  
Cuifeng Tang ◽  
Hongfeng Lu ◽  
Jinmei Li ◽  
Xiaoding Ma ◽  
...  

Abstract Background Understanding and identifying the factors responsible for genetic differentiation is of fundamental importance for efficient utilization and conservation of traditional rice landraces. In this study, we examined the spatial genetic differentiation of 594 individuals sampled from 28 locations in Yunnan Province, China, covering a wide geographic distribution and diverse growing conditions. All 594 accessions were studied using ten unlinked target genes and 48 microsatellite loci, and the representative 108 accessions from the whole collection were sampled for resequencing. Results The genetic diversity of rice landraces was quite different geographically and exhibited a geographical decline from south to north in Yunnan, China. Population structure revealed that the rice landraces could be clearly differentiated into japonica and indica groups, respectively. In each group, the rice accessions could be further differentiated corresponded to their geographic locations, including three subgroups from northern, southern and middle locations. We found more obvious internal geographic structure in the japonica group than in the indica group. In the japonica group, we found that genetic and phenotypic differentiation were strongly related to geographical distance, suggesting a pattern of isolation by distance (IBD); this relationship remained highly significant when we controlled for environmental effects, where the likelihood of gene flow is inversely proportional to the distance between locations. Moreover, the gene flow also followed patterns of isolation by environment (IBE) whereby gene flow rates are higher in similar environments. We detected 314 and 216 regions had been differentially selected between Jap-N and Jap-S, Ind-N and Ind-S, respectively, and thus referred to as selection signatures for different geographic subgroups. We also observed a number of significant and interesting associations between loci and environmental factors, which implies adaptation to local environment. Conclusion Our findings highlight the influence of geographical isolation and environmental heterogeneity on the pattern of the gene flow, and demonstrate that both geographical isolation and environment drives adaptive divergence play dominant roles in the genetic differentiation of the rice landraces in Yunnan, China as a result of limited dispersal.


PeerJ ◽  
2015 ◽  
Vol 3 ◽  
pp. e1411 ◽  
Author(s):  
Guillermo Castillo ◽  
Pedro L. Valverde ◽  
Laura L. Cruz ◽  
Johnattan Hernández-Cumplido ◽  
Guadalupe Andraca-Gómez ◽  
...  

Defensive traits exhibited by plants vary widely across populations. Heritable phenotypic differentiation is likely to be produced by genetic drift and spatially restricted gene flow between populations. However, spatially variable selection exerted by herbivores may also give rise to differences among populations. To explore to what extent these factors promote the among-population differentiation of plant resistance of 13 populations ofDatura stramonium, we compared the degree of phenotypic differentiation (PST) of leaf resistance traits (trichome density, atropine and scopolamine concentration) against neutral genetic differentiation (FST) at microsatellite loci. Results showed that phenotypic differentiation in defensive traits among-population is not consistent with divergence promoted by genetic drift and restricted gene flow alone. Phenotypic differentiation in scopolamine concentration was significantly higher thanFSTacross the range of trait heritability values. In contrast, genetic differentiation in trichome density was different fromFSTonly when heritability was very low. On the other hand, differentiation in atropine concentration differed from the neutral expectation when heritability was less than or equal to 0.3. In addition, we did not find a significant correlation between pair-wise neutral genetic distances and distances of phenotypic resistance traits. Our findings reinforce previous evidence that divergent natural selection exerted by herbivores has promoted the among-population phenotypic differentiation of defensive traits inD. stramonium.


Crustaceana ◽  
2017 ◽  
Vol 90 (7-10) ◽  
pp. 845-864
Author(s):  
Raquel C. Buranelli ◽  
Fernando L. Mantelatto

Population genetic studies on marine taxa, specifically in the field of phylogeography, have revealed distinct levels of genetic differentiation in widely distributed species, even though they present long planktonic larval development. A set of factors have been identified as acting on gene flow between marine populations, including physical or physiological barriers, isolation by distance, larval behaviour, and geological and demographic events. In this way, the aim of this study was to analyse the genetic variability among populations of the crab speciesSesarma rectumRandall, 1840 along the western Atlantic in order to check the levels of genetic diversity and differentiation among populations. To achieve this purpose, mtDNA cytochrome-coxidase subunit I (COI) (DNA-barcode marker) data were used to compute a haplotype network and a Bayesian analysis for genetic differentiation, to calculate an Analysis of Molecular Variance (AMOVA), and haplotype and nucleotide diversities. Neutrality tests (Tajima’sDand Fu’s ) were accessed, as well as pairwise mismatch distribution under the sudden expansion model. We found sharing of haplotypes among populations ofS. rectumalong its range of distribution and no significant indication for restricted gene flow between populations separately over 6000 km, supporting the hypothesis of a high dispersive capacity, and/or the absence of strong selective gradients along the distribution. Nevertheless, some results indicated population structure suggesting the presence of two genetic sources (i.e., groups or lineages), probably interpreted as a result of a very recent bottleneck effect due to habitat losses, followed by the beginning of a population expansion.


Author(s):  
Rhett M Rautsaw ◽  
Tristan D Schramer ◽  
Rachel Acuña ◽  
Lindsay N Arick ◽  
Mark DiMeo ◽  
...  

Abstract The migration-selection balance often governs the evolution of lineages, and speciation with gene flow is now considered common across the tree of life. Ecological speciation is a process that can facilitate divergence despite gene flow due to strong selective pressures caused by ecological differences; however, the exact traits under selection are often unknown. The transition from freshwater to saltwater habitats provides strong selection targeting traits with osmoregulatory function. Several lineages of North American watersnakes (Nerodia spp.) are known to occur in saltwater habitat and represent a useful system for studying speciation by providing an opportunity to investigate gene flow and evaluate how species boundaries are maintained or degraded. We use double digest restriction-site associated DNA sequencing to characterize the migration-selection balance and test for evidence of ecological divergence within the Nerodia fasciata-clarkii complex in Florida. We find evidence of high intraspecific gene flow with a pattern of isolation-by-distance underlying subspecific lineages. However, we identify genetic structure indicative of reduced gene flow between inland and coastal lineages suggesting divergence due to isolation-by-environment. This pattern is consistent with observed environmental differences where the amount of admixture decreases with increased salinity. Furthermore, we identify significantly enriched terms related to osmoregulatory function among a set of candidate loci, including several genes that have been previously implicated in adaptation to salinity stress. Collectively, our results demonstrate that ecological differences, likely driven by salinity, cause strong divergent selection which promotes divergence in the N. fasciata-clarkii complex despite significant gene flow.


2019 ◽  
Vol 190 (1) ◽  
pp. 65-78 ◽  
Author(s):  
Kin Onn Chan ◽  
Rafe M Brown

Abstract The interplay between environmental attributes and evolutionary processes can provide valuable insights into how biodiversity is generated, partitioned and distributed. This study investigates the role of spatial, environmental and historical factors that could potentially drive diversification and shape genetic variation in Malaysian torrent frogs. Torrent frogs are ecologically conserved, and we hypothesize that this could impose tight constraints on dispersal routes, gene flow and consequently genetic structure. Moreover, levels of gene flow were shown to vary among populations from separate mountain ranges, indicating that genetic differentiation could be influenced by landscape features. Using genome-wide single nucleotide polymorphisms, in conjunction with landscape variables derived from Geographic Information Systems, we performed distance-based redundancy analyses and variance partitioning to disentangle the effects of isolation-by-distance (IBD), isolation-by-resistance (IBR) and isolation-by-colonization (IBC). Our results demonstrated that IBR contributed minimally to genetic variation. Intraspecific population structure can be largely attributed to IBD, whereas interspecific diversification was primarily driven by IBC. We also detected two distinct population bottlenecks, indicating that speciation events were likely driven by vicariance or founder events.


2014 ◽  
Vol 369 (1648) ◽  
pp. 20130342 ◽  
Author(s):  
Alexander S. T. Papadopulos ◽  
Maria Kaye ◽  
Céline Devaux ◽  
Helen Hipperson ◽  
Jackie Lighten ◽  
...  

It is now recognized that speciation can proceed even when divergent natural selection is opposed by gene flow. Understanding the extent to which environmental gradients and geographical distance can limit gene flow within species can shed light on the relative roles of selection and dispersal limitation during the early stages of population divergence and speciation. On the remote Lord Howe Island (Australia), ecological speciation with gene flow is thought to have taken place in several plant genera. The aim of this study was to establish the contributions of isolation by environment (IBE) and isolation by community (IBC) to the genetic structure of 19 plant species, from a number of distantly related families, which have been subjected to similar environmental pressures over comparable time scales. We applied an individual-based, multivariate, model averaging approach to quantify IBE and IBC, while controlling for isolation by distance (IBD). Our analyses demonstrated that all species experienced some degree of ecologically driven isolation, whereas only 12 of 19 species were subjected to IBD. The prevalence of IBE within these plant species indicates that divergent selection in plants frequently produces local adaptation and supports hypotheses that ecological divergence can drive speciation in sympatry.


2006 ◽  
Vol 16 (2) ◽  
pp. 113-129 ◽  
Author(s):  
SHIGEKI ASAI ◽  
YOSHIHIRO YAMAMOTO ◽  
SATOSHI YAMAGISHI

The Japanese subspecies of Hodgson's Hawk-eagle, Spizaetus nipalensis orientalis, is considered threatened and has been designated as Endangered by the Japanese government. We determined the complete mitochondrial DNA (mtDNA) sequence of this species and designed a primer set to amplify a highly variable region of mtDNA, part of the control region (CR), based on this complete sequence. Using the primers, we amplified the CR and then determined the haplotypes of 178 samples collected at different sites in Japan. A nested cladistic analysis indicated that gene flow within some clades was restricted. The inference key implied that isolation by distance had caused the restriction of gene flow. Moreover, the ranges of the clades in which restricted gene flow was detected overlapped with the ranges of other clades. These results suggest that there is no fragmental population of Hodgson's Hawk-eagle in Japan and that this species has dispersed within short distances, at least in some lineages. Genetic diversity was high in comparison with other species. Therefore, at least in terms of genetic diversity, the Japanese population of Hodgson's Hawk-eagle is probably not in a critical situation.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8976
Author(s):  
Lisa Chamberland ◽  
Fabian C. Salgado-Roa ◽  
Alma Basco ◽  
Amanda Crastz-Flores ◽  
Greta J. Binford ◽  
...  

Background Modern molecular analyses are often inconsistent with pre-cladistic taxonomic hypotheses, frequently indicating higher richness than morphological taxonomy estimates. Among Caribbean spiders, widespread species are relatively few compared to the prevalence of single island endemics. The taxonomic hypothesis Gasteracantha cancriformis circumscribes a species with profuse variation in size, color and body form. Distributed throughout the Neotropics, G. cancriformis is the only morphological species of Gasteracantha in the New World in this globally distributed genus. Methods We inferred phylogenetic relationships across Neotropical populations of Gasteracantha using three target genes. Within the Caribbean, we estimated genetic diversity, population structure, and gene flow among island populations. Results Our findings revealed a single widespread species of Gasteracantha throughout the Caribbean, G. cancriformis, while suggesting two recently divergent mainland populations that may represent separate species, diverging linages, or geographically isolated demes. The concatenated and COI (Cytochrome c oxidase subunit 1) phylogeny supported a Caribbean clade nested within the New World. Genetic variability was high between island populations for our COI dataset; however, gene flow was also high, especially between large, adjacent islands. We found structured genetic and morphological variation within G. cancriformis island populations; however, this variation does not reflect genealogical relationships. Rather, isolation by distance and local morphological adaptation may explain the observed variation.


2021 ◽  
Author(s):  
Zachary L Nikolakis ◽  
Richard Orton ◽  
Brian I Crother

Understanding the processes and mechanisms that promote lineage divergence is a central goal in evolutionary biology. For instance, studies investigating the spatial distribution of genomic variation often highlight biogeographic barriers underpinning geographic isolation, as well as patterns of isolation by environment and isolation by distance that can also lead to lineage divergence. However, the patterns and processes that shape genomic variation and drive lineage divergence may be taxa-specific, even across closely related taxa co-occurring within the same biogeographic region. Here, we use molecular data in the form of ultra-conserved elements (UCEs) to infer the evolutionary relationships and population genomic structure of the Eastern Pinesnake complex (Pituophis melanoleucus) – a polytypic wide-ranging species that occupies much of the Eastern Nearctic. In addition to inferring evolutionary relationships, population genomic structure, and gene flow, we also test relationships between genomic diversity and putative barriers to dispersal, environmental variation, and geographic distance. We present results that reveal shallow population genomic structure and ongoing gene flow, despite an extensive geographic range that transcends geographic features found to reduce gene flow among many taxa, including other squamate reptiles within the Eastern Nearctic. Further, our results indicate that the observed genomic diversity is spatially distributed as a pattern of isolation by distance and suggest that the current subspecific taxonomy do not adhere to independent lineages, but rather, show a significant amount of admixture across the entire P. melanoleucus range.


mBio ◽  
2019 ◽  
Vol 10 (5) ◽  
Author(s):  
Alexander B. Chase ◽  
Philip Arevalo ◽  
Eoin L. Brodie ◽  
Martin F. Polz ◽  
Ulas Karaoz ◽  
...  

ABSTRACT For free-living bacteria and archaea, the equivalent of the biological species concept does not exist, creating several obstacles to the study of the processes contributing to microbial diversification. These obstacles are particularly high in soil, where high bacterial diversity inhibits the study of closely related genotypes and therefore the factors structuring microbial populations. Here, we isolated strains within a single Curtobacterium ecotype from surface soil (leaf litter) across a regional climate gradient and investigated the phylogenetic structure, recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. Our results indicate that microbial populations are delineated by gene flow discontinuities, with distinct populations cooccurring at multiple sites. Bacterial population structure was further delineated by genomic features allowing for the identification of candidate genes possibly contributing to local adaptation. These results suggest that the genetic structure within this bacterium is maintained both by ecological specialization in localized microenvironments (isolation by environment) and by dispersal limitation between geographic locations (isolation by distance). IMPORTANCE Due to the promiscuous exchange of genetic material and asexual reproduction, delineating microbial species (and, by extension, populations) remains challenging. Because of this, the vast majority of microbial studies assessing population structure often compare divergent strains from disparate environments under varied selective pressures. Here, we investigated the population structure within a single bacterial ecotype, a unit equivalent to a eukaryotic species, defined as highly clustered genotypic and phenotypic strains with the same ecological niche. Using a combination of genomic and computational analyses, we assessed the phylogenetic structure, extent of recombination, and flexible gene content of this genomic diversity to infer patterns of gene flow. To our knowledge, this study is the first to do so for a dominant soil bacterium. Our results indicate that bacterial soil populations, similarly to those in other environments, are structured by gene flow discontinuities and exhibit distributional patterns consistent with both isolation by distance and isolation by environment. Thus, both dispersal limitation and local environments contribute to the divergence among closely related soil bacteria as observed in macroorganisms.


Sign in / Sign up

Export Citation Format

Share Document