FabR senses long chain unsaturated fatty acids to control virulence in pathogen Edwardsiella piscicida

2021 ◽  
Author(s):  
Shuai Shao ◽  
Yi Zhang ◽  
Kaiyu Yin ◽  
Yuanxing Zhang ◽  
Lifan Wei ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Ziomkiewicz ◽  
Magdalena Babiszewska ◽  
Anna Apanasewicz ◽  
Magdalena Piosek ◽  
Patrycja Wychowaniec ◽  
...  

AbstractWe studied a sample of 146 Polish, exclusively breastfeeding mothers and their healthy born on time infants to explore the effect of perinatal psychosocial stress on breast milk composition. Maternal perinatal stress was assessed using Recent Life Changes Questionnaire summarizing stressful events from the previous six months. Stress reactivity was determined by administering the cold pressor test and measuring cortisol in saliva samples taken during the test. Breast milk sample was taken to measure energy, protein, fat, lactose, and fatty acid content. Analyses revealed that stress reactivity was positively associated with milk fat and long-chain unsaturated fatty acids and negatively associated with milk lactose. Perinatal psychosocial stress negatively affected energy density, fat as well as medium-chain and long-chain saturated fatty acids in milk. These results, together with previous studies, advocate monitoring maternal psychological status during the peripartum to promote breastfeeding and healthy infant nutrition.


2013 ◽  
Vol 42 (11) ◽  
pp. 813-823 ◽  
Author(s):  
Francisco Palma Rennó ◽  
José Esler de Freitas Júnior ◽  
Jefferson Rodrigues Gandra ◽  
Lenita Camargo Verdurico ◽  
Marcos Veiga dos Santos ◽  
...  

2002 ◽  
Vol 364 (1) ◽  
pp. 49-55 ◽  
Author(s):  
Sabine D'ANDREA ◽  
Hervé GUILLOU ◽  
Sophie JAN ◽  
Daniel CATHELINE ◽  
Jean-Noël THIBAULT ◽  
...  

The recently cloned Δ6-desaturase is known to catalyse the first step in very-long-chain polyunsaturated fatty acid biosynthesis, i.e. the desaturation of linoleic and α-linolenic acids. The hypothesis that this enzyme could also catalyse the terminal desaturation step, i.e. the desaturation of 24-carbon highly unsaturated fatty acids, has never been elucidated. To test this hypothesis, the activity of rat Δ6-desaturase expressed in COS-7 cells was investigated. Recombinant Δ6-desaturase expression was analysed by Western blot, revealing a single band at 45kDa. The putative involvement of this enzyme in the Δ6-desaturation of C24:5n-3 to C24:6n-3 was measured by incubating transfected cells with C22:5n-3. Whereas both transfected and non-transfected COS-7 cells were able to synthesize C24:5n-3 by elongation of C22:5n-3, only cells expressing Δ6-desaturase were also able to produce C24:6n-3. In addition, Δ6-desaturation of [1-14C]C24:5n-3 was assayed invitro in homogenates from COS-7 cells expressing Δ6-desaturase or not, showing that Δ6-desaturase catalyses the conversion of C24:5n-3 to C24:6n-3. Evidence is therefore presented that the same rat Δ6-desaturase catalyses not only the conversion of C18:3n-3 to C18:4n-3, but also the conversion of C24:5n-3 to C24:6n-3. A similar mechanism in the n-6 series is strongly suggested.


1980 ◽  
Vol 187 (3) ◽  
pp. 851-856 ◽  
Author(s):  
G Vallette ◽  
C Benassayag ◽  
L Savu ◽  
J Delorme ◽  
E A Nunez ◽  
...  

The novel endogenous serum ligands of rat alpha 1-foetoprotein previously demonstrated in different mammalian sera were identified by g.l.c.–mass-spectrometric methods as a mixture of non-esterified long-chain and predominantly unsaturated fatty acids. Detailed comparative analyses of these ligands extracted from foetal- and pregnant-rat sera, rat amniotic fluid and foetal human sera are presented. We also show that an important fraction of these ligands remains associated with the rat alpha 1-foetoprotein after purification; analyses are given for the composition of this lipid moiety of the foetoprotein. The physiological relevance of these results is discussed.


2015 ◽  
Vol 97 (1) ◽  
pp. 64-76 ◽  
Author(s):  
Srinivasan Ramakrishnan ◽  
Melissa D. Docampo ◽  
James I. MacRae ◽  
Julie E. Ralton ◽  
Thusitha Rupasinghe ◽  
...  

2010 ◽  
Vol 192 (17) ◽  
pp. 4289-4299 ◽  
Author(s):  
Youjun Feng ◽  
John E. Cronan

ABSTRACT Escherichia coli fadH encodes a 2,4-dienoyl reductase that plays an auxiliary role in β-oxidation of certain unsaturated fatty acids. In the 2 decades since its discovery, FadH biochemistry has been studied extensively. However, the genetic regulation of FadH has been explored only partially. Here we report mapping of the fadH promoter and document its complex regulation by three independent regulators, the fatty acid degradation FadR repressor, the oxygen-responsive ArcA-ArcB two-component system, and the cyclic AMP receptor protein-cyclic AMP (CRP-cAMP) complex. Electrophoretic mobility shift assays demonstrated that FadR binds to the fadH promoter region and that this binding can be specifically reversed by long-chain acyl-coenzyme A (CoA) thioesters. In vivo data combining transcriptional lacZ fusion and real-time quantitative PCR (qPCR) analyses indicated that fadH is strongly repressed by FadR, in agreement with induction of fadH by long-chain fatty acids. Inactivation of arcA increased fadH transcription by >3-fold under anaerobic conditions. Moreover, fadH expression was increased 8- to 10-fold under anaerobic conditions upon deletion of both the fadR and the arcA gene, indicating that anaerobic expression is additively repressed by FadR and ArcA-ArcB. Unlike fadM, a newly reported member of the E. coli fad regulon that encodes another auxiliary β-oxidation enzyme, fadH was activated by the CRP-cAMP complex in a manner similar to those of the prototypical fad genes. In the absence of the CRP-cAMP complex, repression of fadH expression by both FadR and ArcA-ArcB was very weak, suggesting a possible interplay with other DNA binding proteins.


Sign in / Sign up

Export Citation Format

Share Document