scholarly journals Coupled ecohydrology and plant hydraulics modeling predicts ponderosa pine seedling mortality and lower treeline in the US Northern Rocky Mountains

2018 ◽  
Vol 221 (4) ◽  
pp. 1814-1830 ◽  
Author(s):  
Caelan Simeone ◽  
Marco P. Maneta ◽  
Zachary A. Holden ◽  
Gerard Sapes ◽  
Anna Sala ◽  
...  
2010 ◽  
Vol 25 (1) ◽  
pp. 34-41 ◽  
Author(s):  
Elizabeth D. Reinhardt ◽  
Lisa Holsinger ◽  
Robert Keane

Abstract Removal of dead and live biomass from forested stands affects subsequent fuel dynamics and fire potential. The amount of material left onsite after biomass removal operations can influence the intensity and severity of subsequent unplanned wildfires or prescribed burns. We developed a set of biomass removal treatment scenarios and simulated their effects on a number of stands that represent two major forests types of the northern Rocky Mountains: lodgepole and ponderosa pine. The Fire and Fuels Extension to the Forest Vegetation Simulator was used to simulate effects including stand development, fire behavior, and fire effects prior to the biomass removal treatment and 1, 10, 30, and 60 years after the treatment. Analysis of variance was used to determine whether these changes in fuel dynamics and fire potential differed significantly from each other. Results indicated that fire and fuel characteristics varied within and between forest types and depended on the nature of the treatment, as well as time since treatment. Biomass removal decreased fire potential in the short term, but results were mixed over the long term.


2013 ◽  
Vol 80 (3) ◽  
pp. 406-416 ◽  
Author(s):  
Vachel A. Carter ◽  
Andrea Brunelle ◽  
Thomas A. Minckley ◽  
Philip E. Dennison ◽  
Mitchell J. Power

Fire is one of the most important natural disturbances in the coniferous forests of the US Rocky Mountains. The Rocky Mountains are separated by a climatic boundary between 40° and 45° N, which we refer to as the central Rocky Mountains (CRM). To determine whether the fire regime from the CRM was more similar to the northern Rocky Mountains (NRM) or southern Rocky Mountains (SRM) during the Holocene, a 12,539-yr-old sediment core from Long Lake, Wyoming, located in the CRM was analyzed for charcoal and pollen. These data were then compared to charcoal records from the CRM, NRM and SRM. During the Younger Dryas chronozone, the fire regime was characterized as frequent at Long Lake. The early and middle Holocene fire regime was characterized as infrequent. A brief interval from 4000 to 3000 cal yr BP, termed the Populus period, had a frequent fire regime and remained frequent through the late Holocene at Long Lake. In comparison to sites from the NRM and SRM, the fire regime at Long Lake was most similar to the SRM during the past 12,539 cal yr BP. These results suggest the disturbance regime in the CRM has a greater affinity with those of the SRM.


Author(s):  
Michael L. Zientek ◽  
Pamela D. Derkey ◽  
Robert J. Miller ◽  
J. Douglas Causey ◽  
Arthur A. Bookstrom ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document