A non‐proteinaceous Fusarium cell wall extract triggers receptor‐like protein‐dependent immune responses in Arabidopsis and cotton

2020 ◽  
Author(s):  
Kevin Babilonia ◽  
Ping Wang ◽  
Zunyong Liu ◽  
Pierce Jamieson ◽  
Brendan Mormile ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1587
Author(s):  
Sara Behnami ◽  
Dario Bonetta

Cells interpret mechanical signals and adjust their physiology or development appropriately. In plants, the interface with the outside world is the cell wall, a structure that forms a continuum with the plasma membrane and the cytoskeleton. Mechanical stress from cell wall damage or deformation is interpreted to elicit compensatory responses, hormone signalling, or immune responses. Our understanding of how this is achieved is still evolving; however, we can refer to examples from animals and yeast where more of the details have been worked out. Here, we provide an update on this changing story with a focus on candidate mechanosensitive channels and plasma membrane-localized receptors.


1985 ◽  
Vol 7 (3) ◽  
pp. 304 ◽  
Author(s):  
C. Joram ◽  
J. Desboeuf ◽  
J. Astoin ◽  
M. Bastide

2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Neha Rajendra Kachewar ◽  
Vishal Gupta ◽  
Ashish Ranjan ◽  
Hitendra Kumar Patel ◽  
Ramesh V. Sonti

Abstract Background Cell wall degrading enzymes (CWDEs) induce plant immune responses and E3 ubiquitin ligases are known to play important roles in regulating plant defenses. Expression of the rice E3 ubiquitin ligase, OsPUB41, is enhanced upon treatment of leaves with Xanthomonas oryzae pv. oryzae (Xoo) secreted CWDEs such as Cellulase and Lipase/Esterase. However, it is not reported to have a role in elicitation of immune responses. Results Expression of the rice E3 ubiquitin ligase, OsPUB41, is induced when rice leaves are treated with either CWDEs, pathogen associated molecular patterns (PAMPs), damage associated molecular patterns (DAMPs) or pathogens. Overexpression of OsPUB41 leads to induction of callose deposition, enhanced tolerance to Xoo and Rhizoctonia solani infection in rice and Arabidopsis respectively. In rice, transient overexpression of OsPUB41 leads to enhanced expression of PR genes and SA as well as JA biosynthetic and response genes. However, in Arabidopsis, ectopic expression of OsPUB41 results in upregulation of only JA biosynthetic and response genes. Transient overexpression of either of the two biochemically inactive mutants (OsPUB41C40A and OsPUB41V51R) of OsPUB41 in rice and stable transgenics in Arabidopsis ectopically expressing OsPUB41C40A failed to elicit immune responses. This indicates that the E3 ligase activity of OsPUB41 protein is essential for induction of plant defense responses. Conclusion The results presented here suggest that OsPUB41 is possibly involved in elicitation of CWDE triggered immune responses in rice.


2019 ◽  
Vol 60 (6) ◽  
pp. 757-765
Author(s):  
E. U. Ahiwe ◽  
E. P. Chang’a ◽  
M. E. Abdallh ◽  
M. Al-Qahtani ◽  
S. K. Kheravii ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document