biotic elicitor
Recently Published Documents


TOTAL DOCUMENTS

27
(FIVE YEARS 9)

H-INDEX

6
(FIVE YEARS 0)

Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1447
Author(s):  
Janneth Santos-Rodríguez ◽  
Ericsson Coy-Barrera ◽  
Harold Duban Ardila

The fungal pathogen Fusarium oxysporum f. sp. dianthi (Fod) is the causal agent of the vascular wilt of carnation (Dianthus caryophyllus L.) and the most prevalent pathogen in the areas where this flower is grown. For this reason, the development of new control strategies against Fod in carnation has been continuously encouraged, in particular those based on the implementation of plant resistance inducers that can trigger defensive responses to reduce the disease incidence, even at lower economical and environmental cost. In the present study, the effect of the soil supplementation of a biotic elicitor (i.e., ultrasound-assisted dispersion obtained from Fod mycelium) on disease severity and phenolic-based profiles of roots over two carnation cultivars was evaluated. Results suggest that the tested biotic elicitor, namely, eFod, substantially reduced the progress of vascular wilting in a susceptible cultivar (i.e., ‘Mizuki’) after two independent in vivo tests. The LC-MS-derived semi-quantitative levels of phenolic compounds in roots were also affected by eFod, since particular anthranilate derivatives, conjugated benzoic acids, and glycosylated flavonols were upregulated by elicitation after 144 and 240 h post eFod addition. Our findings indicate that the soil-applied eFod has an effect as a resistance inducer, promoting a disease severity reduction and accumulation of particular phenolic-like compounds.


2021 ◽  
Author(s):  
Kanchan Birat ◽  
Tariq Omar Siddiqi ◽  
Showkat Rasool Mir ◽  
Junaid Aslan ◽  
Rakhi Bansal ◽  
...  

Abstract Vincristine, one of the major vinca alkaloid of Catharanthus roseus(L.) G. Don. (Apocynaceae) was enhanced under in vitro culture of C.roseus using fungal extract of an endophyte Alternaria sesami isolated from the surface-sterilized root cuttings of C.roseus. Vindoline, a precursor molecule of Vincristine was detected for the first time from the fungal endophyte A.sesami which was used as biotic elicitor to enhance Vincristine content in the C.roseus callus.It was identified using high performance liquid chromatography and mass spectroscopy techniques by matching retention time and mass data with reference molecule. Supplementing heat sterilized A.sesami endophytic fungal culture extract into callus culture medium of C. roseus enhanced the Vincristine content in C. roseus callus by 21.717% after 105 day culture.


2020 ◽  
Vol 23 (3) ◽  
pp. 89-95
Author(s):  
Citra Hardiyanti ◽  
Khairullinas Khairullinas ◽  
Jeky Sasemar Lumban ◽  
Titania Tjandrawati Nugroho ◽  
Yuana Nurulita

An antibiotic-resistant and multidrug-resistant (MDR) issue open the role of researchers to continue to search for natural potential as a source of new antimicrobials. One of the potential fungi isolates that can produce antimicrobial active compounds from Indonesian tropical peat soils is Penicillium sp. LBKURCC34. In this study, the production of antimicrobial compounds from local isolates was carried out by batch fermentation method in liquid media with the addition of biotic elicitors to increase the extraction activity and yield. This study aims to optimize the results based on the time the elicitor is added. Staphylococcus aureus was used as a biotic elicitor, which was added on days 2, 3, and 4 in the production of antibiotics by fermentation incubation of 6-14 days. The antibiotic production media was extracted with ethyl acetate and evaporated. The antimicrobial test was carried out by the disk diffusion method against pathogenic bacteria Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Staphylococcus epidermidis using three crude extract contents (19; 38; and 57 µg/disc). Amoxicillin® was used as a positive control (10 µL/disc). The results showed that the addition of S. aureus biotic elicitor extended the log phase growth of the fungus Penicillium sp. LBKURCC34. The optimum condition of production was obtained by adding initiator treatment on the 3rd day for 14 days incubation with the highest yield and could inhibit the growth of all pathogenic microbes.


2019 ◽  
Vol 46 (2) ◽  
pp. 1895-1908
Author(s):  
Ramesh Kumar Kushwaha ◽  
Sucheta Singh ◽  
Shiv Shanker Pandey ◽  
Alok Kalra ◽  
Chikkarasanahalli Shivegowda Vivek Babu

2018 ◽  
Vol 22 ◽  
pp. 240-245 ◽  
Author(s):  
I. V. Zhuk ◽  
A. P. Dmitriev ◽  
G. M. Lisova ◽  
L. O. Kucherova

Aim. The aim is to research the ability of enhancing ferulic acid effect as a biotic elicitor to induce tolerance of winter wheat plants against Septoria tritici Rob et Desm. leaf blotch infection by addition donor of NO signal molecule. Methods. Content of endogenous H2O2 was measured in wheat leaves (cv. Oberig myronivskij and Svytanok myronivskij). The extent of disease development, morphometric parameters and yield structure were analyzed. Results. It is shown that combination of treatment by ferulic acid with NO donor reduced the disease symptoms on 1–2 points. The level of endogenous hydrogen peroxide increased on 27 % in cv. Svytanok myronivskij. Conclusions. The data obtained suggest that combination of ferulic acid with donor NO could be used as more effective combination than biotic elicitor. They decreased the degree of lesions in leaf area caused by Septoria tritici Rob et Desm. leaf blotch infection and stimulated the growth of wheat plants. The analyze of biochemical mechanisms revealed that system resistance of wheat plants is induced via activation of antioxidant protection. Keywords: ferulic acid, NO, biotic elicitors, induced resistance, Triticum aestivum L., Septoria tritici Rob et Desm.


Sign in / Sign up

Export Citation Format

Share Document