Assessment of Interleukin-1 Gene Cluster Polymorphisms in Lone Atrial Fibrillation: New Insight into the Role of Inflammation in Atrial Fibrillation

2013 ◽  
pp. n/a-n/a ◽  
Author(s):  
BARIS GUNGOR ◽  
AHMET EKMEKCI ◽  
AHMET ARMAN ◽  
KAZIM S. OZCAN ◽  
EKREM UCER ◽  
...  
Author(s):  
Julieta Lazarte ◽  
Jacqueline S. Dron ◽  
Adam D. McIntyre ◽  
Allan C. Skanes ◽  
Lorne J. Gula ◽  
...  

2017 ◽  
Vol 83 (15) ◽  
Author(s):  
Robert J. Dorosky ◽  
Jun Myoung Yu ◽  
Leland S. Pierson ◽  
Elizabeth A. Pierson

ABSTRACT R-type tailocins are high-molecular-weight bacteriocins that resemble bacteriophage tails and are encoded within the genomes of many Pseudomonas species. In this study, analysis of the P. chlororaphis 30-84 R-tailocin gene cluster revealed that it contains the structural components to produce two R-tailocins of different ancestral origins. Two distinct R-tailocin populations differing in length were observed in UV-induced lysates of P. chlororaphis 30-84 via transmission electron microscopy. Mutants defective in the production of one or both R-tailocins demonstrated that the killing spectrum of each tailocin is limited to Pseudomonas species. The spectra of pseudomonads killed by the two R-tailocins differed, although a few Pseudomonas species were either killed by or insusceptible to both tailocins. Tailocin release was disrupted by deletion of the holin gene within the tailocin gene cluster, demonstrating that the lysis cassette is required for the release of both R-tailocins. The loss of functional tailocin production reduced the ability of P. chlororaphis 30-84 to compete with an R-tailocin-sensitive strain within biofilms and rhizosphere communities. Our study demonstrates that Pseudomonas species can produce more than one functional R-tailocin particle sharing the same lysis cassette but differing in their killing spectra. This study provides evidence for the role of R-tailocins as determinants of bacterial competition among plant-associated Pseudomonas in biofilms and the rhizosphere. IMPORTANCE Recent studies have identified R-tailocin gene clusters potentially encoding more than one R-tailocin within the genomes of plant-associated Pseudomonas but have not demonstrated that more than one particle is produced or the ecological significance of the production of multiple R-tailocins. This study demonstrates for the first time that Pseudomonas strains can produce two distinct R-tailocins with different killing spectra, both of which contribute to bacterial competition between rhizosphere-associated bacteria. These results provide new insight into the previously uncharacterized role of R-tailocin production by plant-associated Pseudomonas species in bacterial population dynamics within surface-attached biofilms and on roots.


2003 ◽  
Vol 8 (1_suppl) ◽  
pp. S5-S11 ◽  
Author(s):  
Stanley Nattel

Atrial fibrillation is the most common cardiac arrhythmia in clinical practice, and its management remains challenging. A solid understanding of the scientific basis for atrial fibrillation therapy requires insight into the mechanisms underlying the arrhythmia, about which an enormous amount has been learned over the past 10 years. The basic information presently available about atrial fibrillation mechanisms is reviewed. The particular properties of normal atrial electrophysiology are discussed, including salient ionic determinants of the atrial action potential and key anatomic features. Reviewed are three crucial arrhythmia mechanisms long held to be involved in atrial fibrillation: 1) rapid ectopic activity, 2) single-circuit reentry with fibrillatory conduction, and 3) multiple-circuit reentry. The determinants of each and the evidence for their involvement in clinical and/or experimental atrial fibrillation are noted. The physiological consequences, various contributing mechanisms, and clinical implications of the role of atrial-tachycardia remodeling are analyzed. Atrial-tachycardia remodeling links the potential mechanisms of atrial fibrillation, since atrial fibrillation beginning by any mechanism is likely to cause tachycardia-remodeling and thus promote the maintenance of atrial fibrillation by multiple-circuit reentry. Atrial structural remodeling is discussed as a paradigm of atrial fibrillation in which the classic features required for reentry (reduced refractory period and reentrant wavelength) may be lacking. Finally, the importance of recent insights into potential genetic determinants of atrial fibrillation is reviewed. The classic understanding of atrial fibrillation pathophysiology saw the different possible mechanisms as being alternative and opposing hypotheses. We now consider the multiple potential mechanisms as contributing to the pathophysiology of the arrhythmia to a different extent in different clinical settings and interacting with each other in a dynamic way at various stages of the natural history in many patients. It is hoped that this improved mechanistic understanding will lead to the development of improved therapeutic options.


Cardiology ◽  
2019 ◽  
Vol 143 (3-4) ◽  
pp. 107-113 ◽  
Author(s):  
Naseer Ahmed ◽  
Shahida Perveen ◽  
Adeela Mehmood ◽  
Gulab Fatima Rani ◽  
Giulio Molon

Atrial fibrillation (AF) is the most frequent atrial arrhythmia. During the last few decades, owing to numerous advancements in the field of electrophysiology, we reached satisfactory outcomes for paroxysmal AF with the help of ablation procedures. But the most challenging type is still persistent AF. The recurrence rate of AF in patients with persistent AF is very high, which shows the inadequacy of pulmonary vein isolation (PVI). Over the last few decades, we have been trying to gain insight into AF mechanisms, and have come to the conclusion that there must be some triggers and substrates other than pulmonary veins. According to many studies, PVI alone is not enough to deal with persistent AF. The purpose of our review is to summarize updates and to clarify the role of coronary sinus (CS) in AF induction and propagation. This review will provide updated knowledge on developmental, histological, and macroscopic anatomical aspects of CS with its role as arrhythmogenic substrate. This review will also inform readers about application of CS in other electrophysiological procedures.


Circulation ◽  
2003 ◽  
Vol 108 (25) ◽  
pp. 3108-3114 ◽  
Author(s):  
Derick M. Todd ◽  
Allan C. Skanes ◽  
Gerard Guiraudon ◽  
Colette Guiraudon ◽  
Andrew D. Krahn ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document