Genomewide discovery of DNA polymorphisms in rice cultivars with contrasting drought and salinity stress response and their functional relevance

2013 ◽  
Vol 12 (2) ◽  
pp. 253-264 ◽  
Author(s):  
Mukesh Jain ◽  
Kanhu Charan Moharana ◽  
Rama Shankar ◽  
Romika Kumari ◽  
Rohini Garg
2019 ◽  
Author(s):  
Mohan Singh Rajkumar ◽  
Rama Shankar ◽  
Rohini Garg ◽  
Mukesh Jain

AbstractDNA methylation is an epigenetic mark that controls gene expression in response to internal and environmental cues. In this study, we sought to understand the role of DNA methylation in response to desiccation and salinity stresses in three rice cultivars (IR64, stress-sensitive; Nagina 22, drought-tolerant and Pokkali, salinity-tolerant) via bisulphite sequencing. We identified DNA methylation patterns in different genomic/genic regions and analysed their correlation with gene expression. Methylation in CG context within gene body and methylation in CHH context in distal promoter regions were positively correlated with gene expression. However, methylation in other sequence contexts and genic regions was negatively correlated with gene expression. DNA methylation was found to be most dynamic in CHH context under stress condition(s) in the rice cultivars. The expression profiles of genes involved in de-novo methylation were correlated with methylation dynamics. Hypomethylation in Nagina 22 and hypermethylation in Pokkali in response to desiccation and salinity stress, respectively, were correlated with higher expression of abiotic stress response related genes. Our results suggest an important role of DNA methylation in abiotic stress responses in rice in cultivar-specific manner. This study provides useful resource of DNA methylomes that can be integrated with other data to understand abiotic stress response in rice.HighlightBisulphite sequencing revealed single base resolution DNA methylation, and cultivar-specific differential methylation patterns and correlation with gene expression that control desiccation and salinity stress response in the rice cultivars.


2019 ◽  
Vol 6 (1) ◽  
Author(s):  
Shuangrong Yuan ◽  
Junming Zhao ◽  
Zhigang Li ◽  
Qian Hu ◽  
Ning Yuan ◽  
...  

Plant Science ◽  
2016 ◽  
Vol 244 ◽  
pp. 1-7 ◽  
Author(s):  
Hui Ding ◽  
Jianbin Lai ◽  
Qian Wu ◽  
Shengchun Zhang ◽  
Liang Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document