scholarly journals Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield

2016 ◽  
Vol 14 (8) ◽  
pp. 1649-1660 ◽  
Author(s):  
Elton C. Goncalves ◽  
Ann C. Wilkie ◽  
Matias Kirst ◽  
Bala Rathinasabapathi
2002 ◽  
Vol 357 (1426) ◽  
pp. 1499-1509 ◽  
Author(s):  
Liping Zhang ◽  
Anastasios Melis

The recently developed two–stage photosynthesis and H 2 –production protocol with green algae is further investigated in this work. The method employs S deprivation as a tool for the metabolic regulation of photosynthesis. In the presence of S, green algae perform normal photosynthesis, carbohydrate accumulation and oxygen production. In the absence of S, normal photosynthesis stops and the algae slip into the H 2 –production mode. For the first time, to our knowledge, significant amounts of H 2 gas were generated, essentially from sunlight and water. Rates of H 2 production could be sustained continuously for ca . 80 h in the light, but gradually declined thereafter. This work examines biochemical and physiological aspects of this process in the absence or presence of limiting amounts of S nutrients. Moreover, the effects of salinity and of uncouplers of phosphorylation are investigated. It is shown that limiting levels of S can sustain intermediate levels of oxygenic photosynthesis, in essence raising the prospect of a calibration of the rate of photosynthesis by the S content in the growth medium of the algae. It is concluded that careful titration of the supply of S nutrients in the green alga medium might permit the development of a continuous H 2 –production process.


Author(s):  
L. V. Leak

Electron microscopic observations of freeze-fracture replicas of Anabaena cells obtained by the procedures described by Bullivant and Ames (J. Cell Biol., 1966) indicate that the frozen cells are fractured in many different planes. This fracturing or cleaving along various planes allows one to gain a three dimensional relation of the cellular components as a result of such a manipulation. When replicas that are obtained by the freeze-fracture method are observed in the electron microscope, cross fractures of the cell wall and membranes that comprise the photosynthetic lamellae are apparent as demonstrated in Figures 1 & 2.A large portion of the Anabaena cell is composed of undulating layers of cytoplasm that are bounded by unit membranes that comprise the photosynthetic membranes. The adjoining layers of cytoplasm are closely apposed to each other to form the photosynthetic lamellae. Occassionally the adjacent layers of cytoplasm are separated by an interspace that may vary in widths of up to several 100 mu to form intralamellar vesicles.


Author(s):  
A. E. Hotchkiss ◽  
A. T. Hotchkiss ◽  
R. P. Apkarian

Multicellular green algae may be an ancestral form of the vascular plants. These algae exhibit cell wall structure, chlorophyll pigmentation, and physiological processes similar to those of higher plants. The presence of a vascular system which provides water, minerals, and nutrients to remote tissues in higher plants was believed unnecessary for the algae. Among the green algae, the Chaetophorales are complex highly branched forms that might require some means of nutrient transport. The Chaetophorales do possess apical meristematic groups of cells that have growth orientations suggestive of stem and root positions. Branches of Chaetophora incressata were examined by the scanning electron microscope (SEM) for ultrastructural evidence of pro-vascular transport.


Author(s):  
Roa J ◽  
Barroso A ◽  
Ruiz-Pino F ◽  
Vazquez MJ ◽  
Seoane-Collazo P ◽  
...  
Keyword(s):  

2015 ◽  
Vol 51 (4) ◽  
pp. 39-45
Author(s):  
N. I. Kirpenko ◽  
O. M. Usenko ◽  
T. O. Musiy

Sign in / Sign up

Export Citation Format

Share Document