scholarly journals DELLA Proteins BnaA6.RGA and BnaC7.RGA negatively regulate fatty acid biosynthesis by interacting with BnaLEC1s in Brassica napus

Author(s):  
Guanbo Yan ◽  
Pugang Yu ◽  
Xia Tian ◽  
Liang Guo ◽  
Jinxing Tu ◽  
...  
Agronomy ◽  
2018 ◽  
Vol 8 (10) ◽  
pp. 222 ◽  
Author(s):  
Qinfu Sun ◽  
Jueyi Xue ◽  
Li Lin ◽  
Dongxiao Liu ◽  
Jian Wu ◽  
...  

Rapeseed (Brassica napus L.) with substantial lipid and oleic acid content is of great interest to rapeseed breeders. Overexpression of Glycine max transcription factors Dof4 and Dof11 increased lipid accumulation in Arabidopsis and microalgae, in addition to modifying the quantity of certain fatty acid components. Here, we report the involvement of GmDof4 and GmDof11 in regulating fatty acid composition in rapeseeds. Overexpression of GmDof4 and GmDof11 in rapeseed increased oleic acid content and reduced linoleic acid and linolenic acid. Both qPCR and the yeast one-hybrid assay indicated that GmDof4 activated the expression of FAB2 by directly binding to the cis-DNA element on its promoters, while GmDof11 directly inhibited the expression of FAD2. Thus, GmDof4 and GmDof11 might modify the oleic acid content in rapeseed by directly regulating the genes that are associated with fatty acid biosynthesis.


2019 ◽  
Vol 60 (7) ◽  
pp. 1457-1470 ◽  
Author(s):  
Ruizhi Huang ◽  
Zhihong Liu ◽  
Meiqing Xing ◽  
Yong Yang ◽  
Xuelong Wu ◽  
...  

Abstract Heat stress during Brassica napus seed filling severely impairs yield and oil content. However, the mechanisms underlying heat-stress effects on B. napus seed photosynthesis and oil accumulation remain elusive. In this study, we showed that heat stress resulted in reduction of seed oil accumulation, whereas the seed sugar content was enhanced, which indicated that incorporation of carbohydrates into triacylglycerols was impaired. Photosynthesis and respiration rates, and the maximum quantum yield of photosystem II in developing seeds were inhibited by heat stress. Transcriptome analysis revealed that heat stress led to up-regulation of genes associated with high light response, providing evidence that photoinhibition was induced by heat stress. BnWRI1 and its downstream genes, including genes involved in de novo fatty acid biosynthesis pathway, were down-regulated by heat stress. Overexpression of BnWRI1 with a seed-specific promoter stabilized both oil accumulation and photosynthesis under the heat-stress condition, which suggested BnWRI1 plays an important role in mediating the effect of heat stress on fatty acid biosynthesis. A number of sugar transporter genes were inhibited by heat stress, resulting in defective integration of carbohydrates into triacylglycerols units. The results collectively demonstrated that disturbances of the seed photosynthesis machinery, impairment of carbohydrates incorporation into triacylglycerols and transcriptional deregulation of the BnWRI1 pathway by heat stress might be the major cause of decreased oil accumulation in the seed.


1991 ◽  
Vol 81 (2) ◽  
pp. 251-255
Author(s):  
Manfred Focke ◽  
Andrea Feld ◽  
Hartmut K. Lichtenthaler

Author(s):  
L. K. Dahiwade ◽  
S. R. Rochlani ◽  
P. B. Choudhari ◽  
R. P. Dhavale ◽  
H. N. Moreira

Background: Mycobacterium tuberculosis is a causative organism of tuberculosis, which is most deadly disease after cancer in a current decade. The development of multidrug and broadly drug- resistant strains making the tuberculosis problem more and more critical. In last 40 years, only one molecule is added to the treatment regimen. Generally, drug design and development programs are targeted proteins whose function is known to be essential to the bacterial cell. Objectives: Reported here are the development of 'S', 'N’ heterocycles as antimycobacterials targeting fatty acid biosynthesis. Material and Methods: In the present communication, rational development of anti-mycobacterial agent's targeting fatty acid biosynthesis has been done by integrating the pocket modelling and virtual analysis. Results: The identified potential 33 lead compounds were synthesized, characterized by physicochemical and spectroscopic methods like IR, NMR spectroscopy and further screened for antimycobacterial activity using isoniazid as standard. All the designed compounds have shown profound antimycobacterial activity. Conclusion: In this present communication, we found that 3c, 3f, 3l and 4k molecules had expressive desirable biological activity and specific interactions with fatty acids. Further optimization of these leads is necessary for the development of potential antimycobacterial drug candidate having less side effects.


Sign in / Sign up

Export Citation Format

Share Document