Quantitative trait loci and candidate genes responsible for pale green flesh colour in watermelon ( Citrullus lanatus )

2021 ◽  
Author(s):  
Shuang Pei ◽  
Zheng Liu ◽  
Xuezheng Wang ◽  
Feishi Luan ◽  
Zuyun Dai ◽  
...  
2013 ◽  
Vol 138 (2) ◽  
pp. 125-130 ◽  
Author(s):  
Jason Prothro ◽  
Hussein Abdel-Haleem ◽  
Eleni Bachlava ◽  
Victoria White ◽  
Steven Knapp ◽  
...  

Sex expression is an important trait in watermelon (Citrullus lanatus), in which monoecious, andromonoecious, and trimonoecious forms are present. The andromonoecious trait is highly undesirable in watermelon breeding programs because it would require emasculation during hybrid development. In contrast to other cucurbits such as melon (Cucumis melo) and cucumber (Cucumis sativus) in which the genes involved in sex expression are well described and have been cloned, only the inheritance of the a gene associated with the andromonoecious trait has been described in watermelon. We used an intersubspecific C. lanatus var. lanatus × C. lanatus var. citroides F2 population to map quantitative trait loci (QTL) associated with percent male (%M), percent female (%F), percent hermaphrodite (%HM), and percent female of pistillate [%F/P (female + hermaphrodite)] flowers. Four chromosomal regions were identified that were associated with sex expression in watermelon. Major QTL for %F, %HM, and %F/P were colocalized on linkage group 11A and explained 31.3% to 37.7% of the phenotypic variation observed for the three traits. These QTL are suggested to be the location of the a gene in watermelon. Markers linked to two of the four QTL identified were located within 1 Mb of a 1-aminocyclopropane-1-carboxylic acid synthase (ACS) gene on the watermelon draft genome. ACS genes play a key role in sex expression in melon and cucumber and these genes are therefore candidate genes for further studies to elucidate this trait in another economically important cucurbit crop. The QTL and candidate genes identified in the present study lay the foundation for marker-assisted selection for sex expression traits in watermelon.


2018 ◽  
pp. 583-591
Author(s):  
Yi Chen Lee ◽  
M Javed Iqbal ◽  
Victor N Njiti ◽  
Stella Kantartzi ◽  
David A. Lightfoot

Soybean (Glycine max (L.) Merr.) cultivars differ in their resistance to sudden death syndrome (SDS), caused by Fusarium virguliforme. Breeding for improving SDS response has been challenging, due to interactions among the 18-42 known resistance loci. Four quantitative trait loci (QTL) for resistance to SDS (cqRfs–cqRfs3) were clustered within 20 cM of the rhg1 locus underlying resistance to soybean cyst nematode (SCN) on Chromosome (Chr.) 18. Another locus on Chr. 20 (cqRfs5) was reported to interact with this cluster. The aims here were to compare the inheritance of resistance to SDS in a near isogenic line (NIL) population that was fixed for resistance to SCN but segregated at two of the four loci (cqRfs1 and cqRfs) for SDS resistance; to examine the interaction with the locus on Chr. 20; and to identify candidate genes underlying QTL. Used were; a NIL population derived from residual heterozygosity in an F5:7 recombinant inbred line EF60 (lines 1-38); SDS response data from two locations and years; four segregating microsatellite and 1,500 SNP markers. Polymorphic regions were found from 2,788 Kbp to 8,938 Kbp on Chr. 18 and 33,100 Kbp to 34,943 Kbp on Chr. 20 that were significantly (0.005 < P > 0.0001) associated with resistance to SDS. The QTL fine maps suggested that the two loci on Chr. 18 were three loci (cqRfs1, cqRfs, and cqRfs19). Candidate genes were inferred.  An epistatic interaction was inferred between Chr. 18 and Chr. 20 loci. Therefore, SDS resistance QTL were both complex and interacting.


Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 33 ◽  
Author(s):  
Md. Islam ◽  
John Ontoy ◽  
Prasanta Subudhi

Soil and water salinity is one of the major abiotic stresses that reduce growth and productivity in major food crops including rice. The lack of congruence of salt tolerance quantitative trait loci (QTLs) in multiple genetic backgrounds and multiple environments is a major hindrance for undertaking marker-assisted selection (MAS). A genome-wide meta-analysis of QTLs controlling seedling-stage salt tolerance was conducted in rice using QTL information from 12 studies. Using a consensus map, 11 meta-QTLs for three traits with smaller confidence intervals were localized on chromosomes 1 and 2. The phenotypic variance of 3 meta-QTLs was ≥20%. Based on phenotyping of 56 diverse genotypes and breeding lines, six salt-tolerant genotypes (Bharathy, I Kung Ban 4-2 Mutant, Langmanbi, Fatehpur 3, CT-329, and IARI 5823) were identified. The perusal of the meta-QTL regions revealed several candidate genes associated with salt-tolerance attributes. The lack of association between meta-QTL linked markers and the level of salt tolerance could be due to the low resolution of meta-QTL regions and the genetic complexity of salt tolerance. The meta-QTLs identified in this study will be useful not only for MAS and pyramiding, but will also accelerate the fine mapping and cloning of candidate genes associated with salt-tolerance mechanisms in rice.


2012 ◽  
Vol 12 (1) ◽  
pp. 9 ◽  
Author(s):  
Deepmala Sehgal ◽  
Vengaldas Rajaram ◽  
Ian Peter Armstead ◽  
Vincent Vadez ◽  
Yash Pal Yadav ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document