Two candidate genes for two quantitative trait loci epistatically attenuate hypertension in a novel pathway

2015 ◽  
Vol 33 (9) ◽  
pp. 1791-1801 ◽  
Author(s):  
Cristina Chauvet ◽  
Annie Ménard ◽  
Alan Y. Deng
2018 ◽  
pp. 583-591
Author(s):  
Yi Chen Lee ◽  
M Javed Iqbal ◽  
Victor N Njiti ◽  
Stella Kantartzi ◽  
David A. Lightfoot

Soybean (Glycine max (L.) Merr.) cultivars differ in their resistance to sudden death syndrome (SDS), caused by Fusarium virguliforme. Breeding for improving SDS response has been challenging, due to interactions among the 18-42 known resistance loci. Four quantitative trait loci (QTL) for resistance to SDS (cqRfs–cqRfs3) were clustered within 20 cM of the rhg1 locus underlying resistance to soybean cyst nematode (SCN) on Chromosome (Chr.) 18. Another locus on Chr. 20 (cqRfs5) was reported to interact with this cluster. The aims here were to compare the inheritance of resistance to SDS in a near isogenic line (NIL) population that was fixed for resistance to SCN but segregated at two of the four loci (cqRfs1 and cqRfs) for SDS resistance; to examine the interaction with the locus on Chr. 20; and to identify candidate genes underlying QTL. Used were; a NIL population derived from residual heterozygosity in an F5:7 recombinant inbred line EF60 (lines 1-38); SDS response data from two locations and years; four segregating microsatellite and 1,500 SNP markers. Polymorphic regions were found from 2,788 Kbp to 8,938 Kbp on Chr. 18 and 33,100 Kbp to 34,943 Kbp on Chr. 20 that were significantly (0.005 < P > 0.0001) associated with resistance to SDS. The QTL fine maps suggested that the two loci on Chr. 18 were three loci (cqRfs1, cqRfs, and cqRfs19). Candidate genes were inferred.  An epistatic interaction was inferred between Chr. 18 and Chr. 20 loci. Therefore, SDS resistance QTL were both complex and interacting.


Plants ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 33 ◽  
Author(s):  
Md. Islam ◽  
John Ontoy ◽  
Prasanta Subudhi

Soil and water salinity is one of the major abiotic stresses that reduce growth and productivity in major food crops including rice. The lack of congruence of salt tolerance quantitative trait loci (QTLs) in multiple genetic backgrounds and multiple environments is a major hindrance for undertaking marker-assisted selection (MAS). A genome-wide meta-analysis of QTLs controlling seedling-stage salt tolerance was conducted in rice using QTL information from 12 studies. Using a consensus map, 11 meta-QTLs for three traits with smaller confidence intervals were localized on chromosomes 1 and 2. The phenotypic variance of 3 meta-QTLs was ≥20%. Based on phenotyping of 56 diverse genotypes and breeding lines, six salt-tolerant genotypes (Bharathy, I Kung Ban 4-2 Mutant, Langmanbi, Fatehpur 3, CT-329, and IARI 5823) were identified. The perusal of the meta-QTL regions revealed several candidate genes associated with salt-tolerance attributes. The lack of association between meta-QTL linked markers and the level of salt tolerance could be due to the low resolution of meta-QTL regions and the genetic complexity of salt tolerance. The meta-QTLs identified in this study will be useful not only for MAS and pyramiding, but will also accelerate the fine mapping and cloning of candidate genes associated with salt-tolerance mechanisms in rice.


2012 ◽  
Vol 12 (1) ◽  
pp. 9 ◽  
Author(s):  
Deepmala Sehgal ◽  
Vengaldas Rajaram ◽  
Ian Peter Armstead ◽  
Vincent Vadez ◽  
Yash Pal Yadav ◽  
...  

2014 ◽  
Vol 33 (7) ◽  
pp. 1133-1145 ◽  
Author(s):  
E. Carrillo ◽  
Z. Satovic ◽  
G. Aubert ◽  
K. Boucherot ◽  
D. Rubiales ◽  
...  

2016 ◽  
Vol 155 (4) ◽  
pp. 569-581 ◽  
Author(s):  
S. SRAPHET ◽  
A. BOONCHANAWIWAT ◽  
T. THANYASIRIWAT ◽  
R. THAIKERT ◽  
S. WHANKAEW ◽  
...  

SUMMARYCassava (Manihot esculenta Crantz) root yield measured as fresh weight (hereafter root yield) is declining in much of Asia and Africa. The current study aimed to identify quantitative trait loci (QTL) underlying both root and starch fresh weights in F1 cassava. Eight QTL were associated with root yield, underlying 12·9–40·0% of the phenotypic variation (PVE). Nine QTL were associated with starch content, underlying 11·3–27·3% of the PVE. Quantitative trait loci were identified from four different environments that encompassed two locations and 3 years. Consistent QTL for root yield, YLD5_R11 and YLD8_L09 on linkage group (LG) 16, were detected across years and locations. Quantitative trait loci for starch content, ST3_R09, ST6_R10 and ST7_R11 on LG 11, were found across 3 years. Co-localization of QTL for both traits with positive correlation was detected between YLD3_R10 and ST5_R10 on LG 9. Candidate genes within the QTL that were consistent across multiple environments were identified based on cassava genome sequences. Genes predicted to encode for glycosyl hydrolases, uridine 5’-diphospho-(UDP)-glucuronosyl transferases and UDP-glucosyl transferases were found among the 44 genes located within the region containing the QTL controlling starch content. Sixteen genes predicted to encode proteins that were possibly associated with root yield were identified. The QTL controlling root yield and starch content in the current study will be useful for molecular breeding of cassava through marker-assisted selection. The identification of candidate genes underlying both traits will be useful both as markers and for gene expression studies.


Sign in / Sign up

Export Citation Format

Share Document