The volatile cedrene from Trichoderma guizhouense modulates Arabidops is root development through auxin transport and signaling

2021 ◽  
Author(s):  
Yucong Li ◽  
Jiahui Shao ◽  
Yansong Fu ◽  
Yu Chen ◽  
Hongzhe Wang ◽  
...  
Plant Science ◽  
2007 ◽  
Vol 173 (4) ◽  
pp. 417-425 ◽  
Author(s):  
Juan Bao ◽  
Fanjun Chen ◽  
Riliang Gu ◽  
Guoying Wang ◽  
Fusuo Zhang ◽  
...  

2019 ◽  
Vol 116 (41) ◽  
pp. 20770-20775 ◽  
Author(s):  
Takaki Yamauchi ◽  
Akihiro Tanaka ◽  
Hiroki Inahashi ◽  
Naoko K. Nishizawa ◽  
Nobuhiro Tsutsumi ◽  
...  

Lateral roots (LRs) are derived from a parental root and contribute to water and nutrient uptake from the soil. Auxin/indole-3-acetic acid protein (AUX/IAA; IAA) and auxin response factor (ARF)-mediated signaling are essential for LR formation. Lysigenous aerenchyma, a gas space created by cortical cell death, aids internal oxygen transport within plants. Rice (Oryza sativa) forms lysigenous aerenchyma constitutively under aerobic conditions and increases its formation under oxygen-deficient conditions; however, the molecular mechanisms regulating constitutive aerenchyma (CA) formation remain unclear. LR number is reduced by the dominant-negative effect of a mutated AUX/IAA protein in the iaa13 mutant. We found that CA formation is also reduced in iaa13. We have identified ARF19 as an interactor of IAA13 and identified a lateral organ boundary domain (LBD)-containing protein (LBD1-8) as a target of ARF19. IAA13, ARF19, and LBD1-8 were highly expressed in the cortex and LR primordia, suggesting that these genes function in the initiation of CA and LR formation. Restoration of LBD1-8 expression recovered aerenchyma formation and partly recovered LR formation in the iaa13 background, in which LBD1-8 expression was reduced. An auxin transport inhibitor suppressed CA and LR formation, and a natural auxin stimulated CA formation in the presence of the auxin transport inhibitor. Our findings suggest that CA and LR formation are both regulated through AUX/IAA- and ARF-dependent auxin signaling. The initiation of CA formation lagged that of LR formation, which indicates that the formation of CA and LR are regulated differently by auxin signaling during root development in rice.


2021 ◽  
Author(s):  
Yucong Li ◽  
Jiahui Shao ◽  
Yansong Fu ◽  
Yu Chen ◽  
Hongzhe Wang ◽  
...  

Rhizosphere microorganisms interact with plant roots by producing chemical signals to regulate root development. However, the involved distinct bioactive compounds and the signal transduction pathways are remaining to be identified. Here, we show that sesquiterpenes (SQTs) are the main volatile compounds produced by plant beneficial Trichoderma guizhouense NJAU 4742, inhibition of SQTs synthesis in this strain indicated their involvement in plant-fungus cross-kingdom signaling. SQTs component analysis further identified the cedrene, a high abundant SQT in strain NJAU 4742, could stimulate plant growth and root development. Genetic analysis and auxin transport inhibition showed that auxin receptor TIR1, AFB2, auxin-responsive protein IAA14, and transcription factor ARF7, ARF19 affect the response of lateral roots to cedrene. Moreover, auxin influx carrier AUX1, efflux carrier PIN2 were also indispensable for cedrene-induced lateral root formation. Confocal imaging showed that cedrene affected the expression of pPIN2:PIN2:GFP and pPIN3:PIN3:GFP, which may be related to the effect of cedrene on root morphology. These results suggest that a novel SQT molecule from plant beneficial T. guizhouense can regulate plant root development through auxin transport and signaling.


2021 ◽  
Author(s):  
Yang Gang ◽  
Chen Bi-xia ◽  
Chen Tao ◽  
Chen Jia-hui ◽  
Sun Rui ◽  
...  

Auxin and auxin-mediated signaling pathways involved in the regulation of lateral root development are well documented. Although exocytic vesicle trafficking plays an important role in PIN-auxin-efflux carrier recycling, and polar auxin transport during lateral root formation, however, the mechanistic details of these processes are not well understood. Here, we demonstrate an essential regulatory mechanism of B1L that interacts with the exocyst to regulate PIN-mediated polar auxin transport and lateral root initiation. B1L is highly expressed in Arabidopsis roots, and genetic and cellular analyses have revealed that B1L is mainly involved in lateral root primordia initiation. Furthermore, DR5::GUS expression analyses revealed that auxin levels were higher in lateral root primordia of the b1l mutant than in the wild-type. Exogenous auxin treatment confirmed that the lateral root phenotype correlated closely with auxin levels. Additionally, auxin transport-inhibitory treatment indicated that B1L regulates auxin efflux. Consistently, b1l mutants exhibited higher levels of auxin efflux carriers PIN1-GFP and PIN3-GFP in lateral root primordia. Moreover, B1L interacts with the exocyst and functions in recycling PIN2-GFP. Finally, the b1l-1/exo70b1-1 double-mutant exhibited a significant increase in the number of lateral roots compared to the wildtype, b1l-1, and exo70b1-1. Collectively, this study improves our understanding of the highly sophisticated processes involved in exocytic vesicular trafficking-mediated polar auxin transport and lateral root initiation in plants.


Sign in / Sign up

Export Citation Format

Share Document