Extended longevity of Erwinia amylovora vectored by honeybees under in vitro conditions and their capacity for dissemination

2021 ◽  
Author(s):  
Hyun Ju Choi ◽  
Yeon Ju Kim ◽  
Duck Hwan Park
Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 554
Author(s):  
Rafael J. Mendes ◽  
Laura Regalado ◽  
João P. Luz ◽  
Natália Tassi ◽  
Cátia Teixeira ◽  
...  

Fire blight is a major pome fruit trees disease that is caused by the quarantine phytopathogenic Erwinia amylovora, leading to major losses, namely, in pear and apple productions. Nevertheless, no effective sustainable control treatments and measures have yet been disclosed. In that regard, antimicrobial peptides (AMPs) have been proposed as an alternative biomolecule against pathogens but some of those AMPs have yet to be tested against E. amylovora. In this study, the potential of five AMPs (RW-BP100, CA-M, 3.1, D4E1, and Dhvar-5) together with BP100, were assessed to control E. amylovora. Antibiograms, minimal inhibitory, and bactericidal concentrations (minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC), growth and IC50 were determined and membrane permeabilization capacity was evaluated by flow cytometry analysis and colony-forming units (CFUs) plate counting. For the tested AMPs, the higher inhibitory and bactericidal capacity was observed for RW-BP100 and CA-M (5 and 5–8 µM, respectively for both MIC and MBC), whilst for IC50 RW-BP100 presented higher efficiency (2.8 to 3.5 µM). Growth curves for the first concentrations bellow MIC showed that these AMPs delayed E. amylovora growth. Flow cytometry disclosed faster membrane permeabilization for CA-M. These results highlight the potential of RW-BP100 and CA-M AMPs as sustainable control measures against E. amylovora.


2008 ◽  
pp. 885-890
Author(s):  
S. Loreti ◽  
A. Bosco ◽  
A. Gallelli ◽  
C. Damiano ◽  
M. Tonelli ◽  
...  

1987 ◽  
pp. 77-80
Author(s):  
C.P. Lin ◽  
T.A. Chen ◽  
J.M. Wells ◽  
T. van der Zwet

2008 ◽  
pp. 179-181
Author(s):  
M. Thoelen ◽  
J.P. Noben ◽  
J. Robben ◽  
R. Valcke ◽  
T. Deckers

1975 ◽  
Vol 21 (1) ◽  
pp. 35-41 ◽  
Author(s):  
J. M. Erskine ◽  
L. E. Lopatecki

Under carefully controlled laboratory conditions, a highly virulent strain of Erwinia amylovora coinhabited susceptible host tissues with a yellow saprophytic bacterium, which was invariably isolated from fire blight infected trees, with or without producing symptoms of the disease depending on the status of a number of environmental factors, both climatic and physiological. In particular, variation of temperature and sucrose concentration determined, independently, the equilibrium of a readily reversible alternation of predominance of the two bacteria.It is suggested that E. amylovora may sometimes exist as an avirulent resident on the surface or within healthy host plants when environmental conditions favor growth of the yellow saprophyte rather than the pathogen. Such conditions, which are more likely to be obtained in midsummer and the fall, include temperature fall or rise below or above the optimum for E. amylovora, decreased humidity or diminution of sap flow, and increased sugar content in the host tissues.


Author(s):  
Kubilay Kurtulus Bastas

Erwinia amylovora, the causative agent of fire blight disease, threatens a lot of species of the Rosaceae family. Antibiotics and copper compounds in chemical applications are most frequently are applied, but these can be phytotoxic and cause resistant strains of the pathogen. In our experiments, 20 herbal materials were tested for their antimicrobial effectiveness against the fire blight pathogen in vitro and in planta. The air-dried plants ground into fine powder and extraction was performed at room temperature by maceration with 80% (v/v) methanol/distilled water. The minimum inhibitory concentration values were determined by using disc diffusion method and streptomycin was used as control in all experiments. Antimicrobial activity was evaluated by measuring the inhibition zones in reference to the pathogen. Among the tested plants, Szygium aromaticum, Thymus vulgaris and Rhus cararia showed a good antibacterial activity and they inhibited the growth of E. amylovora with inhibition zone diameter ranging from 21 to 27 mm at 20% (w/v) in absolute methanol compared to streptomycin (31 mm) in vitro conditions. In vivo tests were performed by using highly virulent E. amylovora isolate (Eak24b, 91%) grown on TSA medium and inoculation on young shoots of 3-year-old Gala variety of apple and Santa Maria variety of pear seedlings at 107 CFU ml-1 density of the pathogen. Disease severity (%) was assessed by by proportion of blighted shoot length to the whole shoot length and also efficacy of the extracts was determined by using Abbott formula. The highest efficacy was obtained by S. aromaticum and T. vulgaris extracts of reducing shoot blight of cv. Gala and cv. Santa Maria by 67.81% - 64-12% and 51.50% - 51.04% ratios, respectively. Obtaining results showed that some medicinal and aromatic plant extracts might be used against fire blight disease as potential new generation chemicals on pome fruits within integrated and organic control programs.


HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1142a-1142
Author(s):  
Kim Hummer

Pyrus communis L. germplasm came to North America with early settlers. Pyrus cultivars have markedly declined since the turn of the century when more than 2700 unique Pyrus cultivars and 10,000 cultivar synonyms were noted. In 1956, 844 Pyrus cultivars and selections were widely available. Fireblight, Erwinia amylovora (Burril) Winslow et al. 1923, and lack of cold hardiness were main causes of cultivated germplasm loss. During June through December 1989, I resurveyed 37 State Agricultural Experiment Stations which had pear collections in 1956, to determine the present extent of their collections. Only four had more than 100 cultivars; 12 had 10 to 100 cultivars; 21 had less than 10. Experiment stations have decreased their collections because of funding cuts and program redirection. The National Clonal Germplasm Repository at Corvallis, established in 1981, has a collection of 811 unique cultivars and representatives of 26 Pyrus species. About 194 cultivars published in 1908 are in the NCGR collection. At least 424 of those listed in 1956 still exist. Oriental species and other foreign selections not previously available are actively being acquired. About 80% of the clones in the NCGR collection are virus negative; about 10 % reside in backup in vitro storage. Fireblight damage has not been observed thus far. With continued federal support, Pyrus germplasm availability should remain more stable than the decline seen in the last 90 years.


2021 ◽  
Author(s):  
Roshni R. Kharadi ◽  
Kayla Selbmann ◽  
George W. Sundin

AbstractCyclic-di-GMP (c-di-GMP) is an essential bacterial second messenger that regulates the transition to biofilm formation in the phytopathogen Erwinia amylovora. The c-di-GMP system in E. amylovora is comprised of 12 diguanylate cyclase/Edc (dimerize cyclic-di-GMP) and phosphodiesterase/Pde (hydrolyze cyclic-di-GMP) proteins that are characterized by the presence of GGDEF and/or EAL motifs in their domain architecture. In order to study the global regulatory effect (without the inclusion of systemic regulatory impedance) of the c-di-GMP system in E. amylovora, we eliminated all 12 edc and pde genes in E. amylovora Ea1189Δ12. Comparisons between the representative transcriptomic profiles of Ea1189Δ12 and the combinatorial edc gene knockout mutant (Ea1189Δ5) revealed marked overall distinctions in expression levels for targets in a wide range of regulatory categories, including metabolic pathways involved in the utilization of methionine, isoleucine, histidine, etc. as well as critical signal transduction pathways including the Rcs phosphorelay and PhoPQ system. A complete loss of the cyclic-di-GMP signaling components resulted in the inability of Ea1189Δ12 cells to attach to and form biofilms in vitro and within the xylem vasculature in apple shoots. Using a flow-based in vitro biofilm system, we found that initial surface sensing was primarily dependent on the flagellar filament (FliC), following which the type IV pilus (HofC) was required to anchor cells to the surface to initialize biofilm development. A transcriptomic analysis of WT E. amylovora Ea1189 and Ea1189Δ12 cells in various stages of biofilm development revealed that cyclic-di-GMP based regulation had widespread effects on purine and pyrimidine biosynthesis pathways, amylovoran biosynthesis genes and the EnvZ/OmpR signal transduction system. Additionally, complementing individual eliminated genes back into Ea1189Δ12, and the collective evaluation of several virulence factors, enabled the correlative clustering of the functional effect rendered by each Edc and Pde enzyme in the system.SignificanceCyclic-di-GMP dependent regulation, in the context of biofilm formation, has been studied in several bacterial systems. However, the comprehensiveness of the studies exploring the role of individual genetic components related to cyclic-di-GMP is affected by the often large number of diguanylate cyclase and phosphodiesterase enzymes present within individual bacterial systems. To explore the evolutionary dependencies related to cyclic-di-GMP in E. amylovora, we used a collective elimination approach, whereby all of the enzymes involved in cyclic-di-GMP metabolism were eliminated from the system. This approach enabled us to highlight the critical importance of cyclic-di-GMP in plant xylem colonization due to its effect on surface attachment. Additionally, we highlight the global transcriptomic effect of cyclic-di-GMP dependent signaling at various stages of biofilm development. Our approach is aimed at exploring the regulatory role of individual cyclic-di-GMP related enzymes in a background that is free from any redundancy-based feedback.


Sign in / Sign up

Export Citation Format

Share Document