Green leaf volatile (Z)‐3‐hexeny‐1‐yl acetate reduces salt stress in peanut by affecting photosynthesis and cellular redox homeostasis

2020 ◽  
Vol 170 (1) ◽  
pp. 75-92
Author(s):  
Run‐Ze Guo ◽  
Heng‐Yu Yan ◽  
Xi‐Xu Li ◽  
Xiao‐Xia Zou ◽  
Xiao‐Jun Zhang ◽  
...  
2019 ◽  
Vol 18 (6) ◽  
pp. 1266-1279
Author(s):  
Ying ZHAO ◽  
Meng LIU ◽  
Feng WANG ◽  
Dong DING ◽  
Chang-jiang ZHAO ◽  
...  

The Analyst ◽  
2021 ◽  
Author(s):  
Ya-Nan Wei ◽  
Bo Lin ◽  
Yang Shu ◽  
Jian-Hua Wang

As an indispensable biothiol, cysteine (Cys) plays a critical part in cellular redox homeostasis, pathological and physiological processes. One of the main sources of reactive oxygen species (ROS) in human...


2021 ◽  
Vol 22 (11) ◽  
pp. 6022
Author(s):  
Sylwia Ciesielska ◽  
Izabella Slezak-Prochazka ◽  
Patryk Bil ◽  
Joanna Rzeszowska-Wolny

In living cells Reactive Oxygen Species (ROS) participate in intra- and inter-cellular signaling and all cells contain specific systems that guard redox homeostasis. These systems contain both enzymes which may produce ROS such as NADPH-dependent and other oxidases or nitric oxide synthases, and ROS-neutralizing enzymes such as catalase, peroxiredoxins, thioredoxins, thioredoxin reductases, glutathione reductases, and many others. Most of the genes coding for these enzymes contain sequences targeted by micro RNAs (miRNAs), which are components of RNA-induced silencing complexes and play important roles in inhibiting translation of their targeted messenger RNAs (mRNAs). In this review we describe miRNAs that directly target and can influence enzymes responsible for scavenging of ROS and their possible role in cellular redox homeostasis. Regulation of antioxidant enzymes aims to adjust cells to survive in unstable oxidative environments; however, sometimes seemingly paradoxical phenomena appear where oxidative stress induces an increase in the levels of miRNAs which target genes which are supposed to neutralize ROS and therefore would be expected to decrease antioxidant levels. Here we show examples of such cellular behaviors and discuss the possible roles of miRNAs in redox regulatory circuits and further cell responses to stress.


2014 ◽  
Vol 48 (21) ◽  
pp. 12671-12678 ◽  
Author(s):  
Mohammad Safi Shalamzari ◽  
Ariane Kahnt ◽  
Reinhilde Vermeylen ◽  
Tadeusz E. Kleindienst ◽  
Michael Lewandowski ◽  
...  

2019 ◽  
Vol 60 (8) ◽  
pp. 1829-1841 ◽  
Author(s):  
Guochun Wu ◽  
Sha Li ◽  
Xiaochuan Li ◽  
Yunhong Liu ◽  
Shuangshuang Zhao ◽  
...  

Abstract Alternative oxidase (AOX) has been reported to be involved in mitochondrial function and redox homeostasis, thus playing an essential role in plant growth as well as stress responses. However, its biological functions in nonseed plants have not been well characterized. Here, we report that AOX participates in plant salt tolerance regulation in moss Physcomitrella patens (P. patens). AOX is highly conserved and localizes to mitochondria in P. patens. We observed that PpAOX rescued the impaired cyanide (CN)-resistant alternative (Alt) respiratory pathway in Arabidopsis thaliana (Arabidopsis) aox1a mutant. PpAOX transcription and Alt respiration were induced upon salt stress in P. patens. Using homologous recombination, we generated PpAOX-overexpressing lines (PpAOX OX). PpAOX OX plants exhibited higher Alt respiration and lower total reactive oxygen species accumulation under salt stress condition. Strikingly, we observed that PpAOX OX plants displayed decreased salt tolerance. Overexpression of PpAOX disturbed redox homeostasis in chloroplasts. Meanwhile, chloroplast structure was adversely affected in PpAOX OX plants in contrast to wild-type (WT) P. patens. We found that photosynthetic activity in PpAOX OX plants was also lower compared with that in WT. Together, our work revealed that AOX participates in plant salt tolerance in P. patens and there is a functional link between mitochondria and chloroplast under challenging conditions.


2020 ◽  
Author(s):  
Carla Umansky ◽  
Agustín Morellato ◽  
Marco Scheidegger ◽  
Matthias Rieckher ◽  
Manuela R. Martinefski ◽  
...  

AbstractFormaldehyde (FA) is a ubiquitous endogenous and environmental metabolite that is thought to exert cytotoxicity through DNA and DNA-protein crosslinking. We show here that FA can cause cellular damage beyond genotoxicity by triggering oxidative stress, which is prevented by the enzyme alcohol dehydrogenase 5 (ADH5/GSNOR). Mechanistically, we determine that endogenous FA reacts with the redox-active thiol group of glutathione (GSH) forming S-hydroxymethyl-GSH, which is metabolized by ADH5 yielding reduced GSH thus preventing redox disruption. We identify the ADH5-ortholog gene in Caenorhabditis elegans and show that oxidative stress also underlies FA toxicity in nematodes. Moreover, we show that endogenous GSH can protect cells lacking the Fanconi Anemia DNA repair pathway from FA, which might have broad implications for Fanconi Anemia patients and for healthy BRCA2-mutation carriers. We thus establish a highly conserved mechanism through which endogenous FA disrupts the GSH-regulated cellular redox homeostasis that is critical during development and aging.


2016 ◽  
Vol 213 (5) ◽  
pp. 859-875 ◽  
Author(s):  
Chun Yang ◽  
Ye-xiong Tan ◽  
Guang-zhen Yang ◽  
Jian Zhang ◽  
Yu-fei Pan ◽  
...  

Oxidative stress status has a key role in hepatocellular carcinoma (HCC) development and progression. Normally, reactive oxygen species (ROS) levels are tightly controlled by an inducible antioxidant program that responds to cellular stressors. How HCC cells respond to excessive oxidative stress remains elusive. Here, we identified a feedback loop between gankyrin, an oncoprotein overexpressed in human HCC, and Nrf2 maintaining the homeostasis in HCC cells. Mechanistically, gankyrin was found to interact with the Kelch domain of Keap1 and effectively competed with Nrf2 for Keap1 binding. Increased expression of gankyrin in HCC cells blocked the binding between Nrf2 and Keap1, inhibiting the degradation of Nrf2 by proteasome. Interestingly, accumulation and translocation of Nrf2 increased the transcription of gankyrin through binding to the ARE elements in the promoter of gankyrin. The positive feedback regulation involving gankyrin and Nrf2 modulates a series of antioxidant enzymes, thereby lowering intracellular ROS and conferring a steadier intracellular environment, which prevents mitochondrial damage and cell death induced by excessive oxidative stress. Our results indicate that gankyrin is a regulator of cellular redox homeostasis and provide a link between oxidative stress and the development of HCC.


2019 ◽  
Vol 132 (2) ◽  
pp. 285-293 ◽  
Author(s):  
Zhaojun Xin ◽  
Lingang Ge ◽  
Shenglong Chen ◽  
Xiaoling Sun

Sign in / Sign up

Export Citation Format

Share Document