Attentional and meta‐cognitive processes underlying mind wandering episodes during continuous naturalistic reading are associated with specific changes in eye behavior

2022 ◽  
Author(s):  
Pablo Oyarzo ◽  
David Preiss ◽  
Diego Cosmelli
2017 ◽  
Author(s):  
Wendy Hasenkamp ◽  
Christine Wilson-Mendenhall ◽  
Erica Duncan ◽  
Lawrence Barsalou

Studies have suggested that the default mode network is active during mind wandering, which is often experienced intermittently during sustained attention tasks. Conversely, an anticorrelated task-positive network is thought to subserve various forms of attentional processing. Understanding how these two systems work together is central for understanding many forms of optimal and sub-optimal task performance. Here we present a basic model of naturalistic cognitive fluctuations between mind wandering and attentional states derived from the practice of focused attention meditation. This model proposes four intervals in a cognitive cycle: mind wandering, awareness of mind wandering, shifting of attention, and sustained attention. People who train in this style of meditation cultivate their abilities to monitor cognitive processes related to attention and distraction, making them well suited to report on these mental events. Fourteen meditation practitioners performed breath-focused meditation while undergoing fMRI scanning. When participants realized their mind had wandered, they pressed a button and returned their focus to the breath. The four intervals above were then constructed around these button presses. We hypothesized that periods of mind wandering would be associated with default mode activity, whereas cognitive processes engaged during awareness of mind wandering, shifting of attention and sustained attention would engage attentional subnetworks. Analyses revealed activity in brain regions associated with the default mode during mind wandering, and in salience network regions during awareness of mind wandering. Elements of the executive network were active during shifting and sustained attention. Furthermore, activations during these cognitive phases were modulated by lifetime meditation experience. These findings support and extend theories about cognitive correlates of distributed brain networks.


Author(s):  
John S. Antrobus

Although mind-wandering and dreaming often appear as trivial or distracting cognitive processes, this chapter suggests that they may also contribute to the evaluation, sorting, and saving of representations of recent events of future value to an individual. But 50 years after spontaneous imagery—night dreaming—was first compared to concurrent cortical EEG, there is limited hard evidence on the neural processes that produce either visual dreaming imagery or the speech imagery of waking spontaneous thought. The authors propose here an outline of a neurocognitive model of such processes with suggestions for future research that may contribute to a better understanding of their utility.


Author(s):  
Claire M. Zedelius ◽  
Jonathan W. Schooler

Mind-wandering encompasses a variety of different types of thought, involving various different experiential qualities, emotions, and cognitive processes. Much is lost by simply lumping them together, as is typically done in the literature. The goal of this chapter is to explore the nuances that distinguish different types of mind-wandering. The chapter draws on research on mind-wandering as well as other literatures to gain a better understanding of how these different types of mind-wandering affect cognition and behavior. It specifically discusses the distinct effects of different types of mind-wandering on task performance, working memory, mood, and creativity. Finally, the chapter discusses the idea of deliberate engagement in particular types of mind-wandering as a way to achieve desirable outcomes, such as maintaining a positive mood, enhancing creativity, or aiding decision-making.


2019 ◽  
Vol 116 (8) ◽  
pp. 3316-3321 ◽  
Author(s):  
Claire O’Callaghan ◽  
James M. Shine ◽  
John R. Hodges ◽  
Jessica R. Andrews-Hanna ◽  
Muireann Irish

Mind wandering represents the human capacity for internally focused thought and relies upon the brain’s default network and its interactions with attentional networks. Studies have characterized mind wandering in healthy people, yet there is limited understanding of how this capacity is affected in clinical populations. This paper used a validated thought-sampling task to probe mind wandering capacity in two neurodegenerative disorders: behavioral variant frontotemporal dementia [(bvFTD); n = 35] and Alzheimer’s disease [(AD); n = 24], compared with older controls (n = 37). These patient groups were selected due to canonical structural and functional changes across sites of the default and frontoparietal networks and well-defined impairments in cognitive processes that support mind wandering. Relative to the controls, bvFTD patients displayed significantly reduced mind wandering capacity, offset by a significant increase in stimulus-bound thought. In contrast, AD patients demonstrated comparable levels of mind wandering to controls, in the context of a relatively subtle shift toward stimulus-/task-related forms of thought. In the patient groups, mind wandering was associated with gray matter integrity in the hippocampus/parahippocampus, striatum, insula, and orbitofrontal cortex. Resting-state functional connectivity revealed associations between mind wandering capacity and connectivity within and between regions of the frontoparietal and default networks with distinct patterns evident in patients vs. controls. These findings support a relationship between altered mind wandering capacity in neurodegenerative disorders and structural and functional integrity of the default and frontoparietal networks. This paper highlights a dimension of cognitive dysfunction not well documented in neurodegenerative disorders and validates current models of mind wandering in a clinical population.


2016 ◽  
Vol 113 (48) ◽  
pp. 13899-13904 ◽  
Author(s):  
Aaron Kucyi ◽  
Michael Esterman ◽  
Clay S. Riley ◽  
Eve M. Valera

The brain’s default mode network (DMN) is highly active during wakeful rest when people are not overtly engaged with a sensory stimulus or externally oriented task. In multiple contexts, increased spontaneous DMN activity has been associated with self-reported episodes of mind-wandering, or thoughts that are unrelated to the present sensory environment. Mind-wandering characterizes much of waking life and is often associated with error-prone, variable behavior. However, increased spontaneous DMN activity has also been reliably associated with stable, rather than variable, behavior. We aimed to address this seeming contradiction and to test the hypothesis that single measures of attentional states, either based on self-report or on behavior, are alone insufficient to account for DMN activity fluctuations. Thus, we simultaneously measured varying levels of self-reported mind-wandering, behavioral variability, and brain activity with fMRI during a unique continuous performance task optimized for detecting attentional fluctuations. We found that even though mind-wandering co-occurred with increased behavioral variability, highest DMN signal levels were best explained by intense mind-wandering combined with stable behavior simultaneously, compared with considering either single factor alone. These brain–behavior–experience relationships were highly consistent within known DMN subsystems and across DMN subregions. In contrast, such relationships were absent or in the opposite direction for other attention-relevant networks (salience, dorsal attention, and frontoparietal control networks). Our results suggest that the cognitive processes that spontaneous DMN activity specifically reflects are only partially related to mind-wandering and include also attentional state fluctuations that are not captured by self-report.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Michael Klesel ◽  
Frederike Marie Oschinsky ◽  
Colin Conrad ◽  
Bjoern Niehaves

PurposeThis study sought to distinguish characteristics of cognitive processes while using information technology. In particular, it identifies similarities and differences between mind wandering and cognitive absorption in technology-related settings in an effort to develop a deeper understanding of the role that mind wandering plays when using information technology.Design/methodology/approachData was gathered using an online survey including responses from 619 English-speaking adults in 2019. We applied a confirmatory factor analysis and used a robust variant of maximum likelihood estimator with robust standard errors and a Satorra–Bentler scaled test statistic. The data analysis procedure was conducted with the R environment using the psych package for descriptive analysis, and lavaan to investigate the factorial structure and the underlying correlations.FindingsWe discuss the benefits of carefully differentiating between cognitive processes in Information Systems research and depict avenues how future research can address current shortcomings with a careful investigation of neurophysiological antecedents.Originality/valueTo date, mind wandering has been explored as a single phenomenon, though research in reference disciplines has begun to distinguish varieties and how they distinctly impact behavior. We demonstrate that this distinction is also important for our discipline by showing how two specific types of mind wandering (i.e. deliberate and spontaneous mind wandering) are differently correlated with sub-dimensions of cognitive absorption, a well-studied construct.


2018 ◽  
Vol 41 ◽  
Author(s):  
Kevin Arceneaux

AbstractIntuitions guide decision-making, and looking to the evolutionary history of humans illuminates why some behavioral responses are more intuitive than others. Yet a place remains for cognitive processes to second-guess intuitive responses – that is, to be reflective – and individual differences abound in automatic, intuitive processing as well.


2020 ◽  
Vol 43 ◽  
Author(s):  
Myrthe Faber

Abstract Gilead et al. state that abstraction supports mental travel, and that mental travel critically relies on abstraction. I propose an important addition to this theoretical framework, namely that mental travel might also support abstraction. Specifically, I argue that spontaneous mental travel (mind wandering), much like data augmentation in machine learning, provides variability in mental content and context necessary for abstraction.


2020 ◽  
Vol 43 ◽  
Author(s):  
Thibaud Gruber

Abstract The debate on cumulative technological culture (CTC) is dominated by social-learning discussions, at the expense of other cognitive processes, leading to flawed circular arguments. I welcome the authors' approach to decouple CTC from social-learning processes without minimizing their impact. Yet, this model will only be informative to understand the evolution of CTC if tested in other cultural species.


Sign in / Sign up

Export Citation Format

Share Document