scholarly journals From mind wandering to involuntary retrieval: Age-related differences in spontaneous cognitive processes

2016 ◽  
Vol 80 ◽  
pp. 142-156 ◽  
Author(s):  
David Maillet ◽  
Daniel L. Schacter
2014 ◽  
Vol 28 (3) ◽  
pp. 148-161 ◽  
Author(s):  
David Friedman ◽  
Ray Johnson

A cardinal feature of aging is a decline in episodic memory (EM). Nevertheless, there is evidence that some older adults may be able to “compensate” for failures in recollection-based processing by recruiting brain regions and cognitive processes not normally recruited by the young. We review the evidence suggesting that age-related declines in EM performance and recollection-related brain activity (left-parietal EM effect; LPEM) are due to altered processing at encoding. We describe results from our laboratory on differences in encoding- and retrieval-related activity between young and older adults. We then show that, relative to the young, in older adults brain activity at encoding is reduced over a brain region believed to be crucial for successful semantic elaboration in a 400–1,400-ms interval (left inferior prefrontal cortex, LIPFC; Johnson, Nessler, & Friedman, 2013 ; Nessler, Friedman, Johnson, & Bersick, 2007 ; Nessler, Johnson, Bersick, & Friedman, 2006 ). This reduced brain activity is associated with diminished subsequent recognition-memory performance and the LPEM at retrieval. We provide evidence for this premise by demonstrating that disrupting encoding-related processes during this 400–1,400-ms interval in young adults affords causal support for the hypothesis that the reduction over LIPFC during encoding produces the hallmarks of an age-related EM deficit: normal semantic retrieval at encoding, reduced subsequent episodic recognition accuracy, free recall, and the LPEM. Finally, we show that the reduced LPEM in young adults is associated with “additional” brain activity over similar brain areas as those activated when older adults show deficient retrieval. Hence, rather than supporting the compensation hypothesis, these data are more consistent with the scaffolding hypothesis, in which the recruitment of additional cognitive processes is an adaptive response across the life span in the face of momentary increases in task demand due to poorly-encoded episodic memories.


2016 ◽  
Vol 6 (1-2) ◽  
pp. 119-146 ◽  
Author(s):  
Henrike K. Blumenfeld ◽  
Scott R. Schroeder ◽  
Susan C. Bobb ◽  
Max R. Freeman ◽  
Viorica Marian

Abstract Recent research suggests that bilingual experience reconfigures linguistic and nonlinguistic cognitive processes. We examined the relationship between linguistic competition resolution and nonlinguistic cognitive control in younger and older adults who were either bilingual or monolingual. Participants heard words in English and identified the referent among four pictures while eye-movements were recorded. Target pictures (e.g., cab) appeared with a phonological competitor picture (e.g., cat) and two filler pictures. After each eye-tracking trial, priming probes assessed residual activation and inhibition of target and competitor words. When accounting for processing speed, results revealed that age-related changes in activation and inhibition are smaller in bilinguals than in monolinguals. Moreover, younger and older bilinguals, but not monolinguals, recruited similar inhibition mechanisms during word identification and during a nonlinguistic Stroop task. Results suggest that, during lexical access, bilinguals show more consistent competition resolution and recruitment of cognitive control across the lifespan than monolinguals.


2017 ◽  
Author(s):  
Wendy Hasenkamp ◽  
Christine Wilson-Mendenhall ◽  
Erica Duncan ◽  
Lawrence Barsalou

Studies have suggested that the default mode network is active during mind wandering, which is often experienced intermittently during sustained attention tasks. Conversely, an anticorrelated task-positive network is thought to subserve various forms of attentional processing. Understanding how these two systems work together is central for understanding many forms of optimal and sub-optimal task performance. Here we present a basic model of naturalistic cognitive fluctuations between mind wandering and attentional states derived from the practice of focused attention meditation. This model proposes four intervals in a cognitive cycle: mind wandering, awareness of mind wandering, shifting of attention, and sustained attention. People who train in this style of meditation cultivate their abilities to monitor cognitive processes related to attention and distraction, making them well suited to report on these mental events. Fourteen meditation practitioners performed breath-focused meditation while undergoing fMRI scanning. When participants realized their mind had wandered, they pressed a button and returned their focus to the breath. The four intervals above were then constructed around these button presses. We hypothesized that periods of mind wandering would be associated with default mode activity, whereas cognitive processes engaged during awareness of mind wandering, shifting of attention and sustained attention would engage attentional subnetworks. Analyses revealed activity in brain regions associated with the default mode during mind wandering, and in salience network regions during awareness of mind wandering. Elements of the executive network were active during shifting and sustained attention. Furthermore, activations during these cognitive phases were modulated by lifetime meditation experience. These findings support and extend theories about cognitive correlates of distributed brain networks.


Author(s):  
John S. Antrobus

Although mind-wandering and dreaming often appear as trivial or distracting cognitive processes, this chapter suggests that they may also contribute to the evaluation, sorting, and saving of representations of recent events of future value to an individual. But 50 years after spontaneous imagery—night dreaming—was first compared to concurrent cortical EEG, there is limited hard evidence on the neural processes that produce either visual dreaming imagery or the speech imagery of waking spontaneous thought. The authors propose here an outline of a neurocognitive model of such processes with suggestions for future research that may contribute to a better understanding of their utility.


Author(s):  
Claire M. Zedelius ◽  
Jonathan W. Schooler

Mind-wandering encompasses a variety of different types of thought, involving various different experiential qualities, emotions, and cognitive processes. Much is lost by simply lumping them together, as is typically done in the literature. The goal of this chapter is to explore the nuances that distinguish different types of mind-wandering. The chapter draws on research on mind-wandering as well as other literatures to gain a better understanding of how these different types of mind-wandering affect cognition and behavior. It specifically discusses the distinct effects of different types of mind-wandering on task performance, working memory, mood, and creativity. Finally, the chapter discusses the idea of deliberate engagement in particular types of mind-wandering as a way to achieve desirable outcomes, such as maintaining a positive mood, enhancing creativity, or aiding decision-making.


2019 ◽  
Vol 117 (1) ◽  
pp. 771-778 ◽  
Author(s):  
Graham L. Baum ◽  
Zaixu Cui ◽  
David R. Roalf ◽  
Rastko Ciric ◽  
Richard F. Betzel ◽  
...  

The protracted development of structural and functional brain connectivity within distributed association networks coincides with improvements in higher-order cognitive processes such as executive function. However, it remains unclear how white-matter architecture develops during youth to directly support coordinated neural activity. Here, we characterize the development of structure–function coupling using diffusion-weighted imaging andn-back functional MRI data in a sample of 727 individuals (ages 8 to 23 y). We found that spatial variability in structure–function coupling aligned with cortical hierarchies of functional specialization and evolutionary expansion. Furthermore, hierarchy-dependent age effects on structure–function coupling localized to transmodal cortex in both cross-sectional data and a subset of participants with longitudinal data (n= 294). Moreover, structure–function coupling in rostrolateral prefrontal cortex was associated with executive performance and partially mediated age-related improvements in executive function. Together, these findings delineate a critical dimension of adolescent brain development, whereby the coupling between structural and functional connectivity remodels to support functional specialization and cognition.


Author(s):  
Hana Burianová

Determining the mechanisms that underlie neurocognitive aging, such as compensation or dedifferentiation, and facilitating the development of effective strategies for cognitive improvement is essential due to the steadily rising aging population. One approach to study the characteristics of healthy aging comprises the assessment of functional connectivity, delineating markers of age-related neurocognitive plasticity. Functional connectivity paradigms characterize complex one-to-many (or many-to-many) structure–function relations, as higher-level cognitive processes are mediated by the interaction among a number of functionally related neural areas rather than localized to discrete brain regions. Task-related or resting-state interregional correlations of brain activity have been used as reliable indices of functional connectivity, delineating age-related alterations in a number of large-scale brain networks, which subserve attention, working memory, episodic retrieval, and task-switching. Together with behavioral and regional activation studies, connectivity studies and modeling approaches have contributed to our understanding of the mechanisms of age-related reorganization of distributed functional networks; specifically, reduced neural specificity (dedifferentiation) and associated impairment in inhibitory control and compensatory neural recruitment.


2020 ◽  
Vol 375 (1811) ◽  
pp. 20190618 ◽  
Author(s):  
Agnès Lacreuse ◽  
Naftali Raz ◽  
Daniel Schmidtke ◽  
William D. Hopkins ◽  
James G. Herndon

Executive function (EF) is a complex construct that reflects multiple higher-order cognitive processes such as planning, updating, inhibiting and set-shifting. Decline in these functions is a hallmark of cognitive ageing in humans, and age differences and changes in EF correlate with age-related differences and changes in association cortices, particularly the prefrontal areas. Here, we review evidence for age-related decline in EF and associated neurobiological changes in prosimians, New World and Old World monkeys, apes and humans. While EF declines with age in all primate species studied, the relationship of this decline with age-related alterations in the prefrontal cortex remains unclear, owing to the scarcity of neurobiological studies focusing on the ageing brain in most primate species. In addition, the influence of sex, vascular and metabolic risk, and hormonal status has rarely been considered. We outline several methodological limitations and challenges with the goal of producing a comprehensive integration of cognitive and neurobiological data across species and elucidating how ageing shapes neurocognitive trajectories in primates with different life histories, lifespans and brain architectures. Such comparative investigations are critical for fostering translational research and understanding healthy and pathological ageing in our own species. This article is part of the theme issue ‘Evolution of the primate ageing process’.


2019 ◽  
Vol 116 (8) ◽  
pp. 3316-3321 ◽  
Author(s):  
Claire O’Callaghan ◽  
James M. Shine ◽  
John R. Hodges ◽  
Jessica R. Andrews-Hanna ◽  
Muireann Irish

Mind wandering represents the human capacity for internally focused thought and relies upon the brain’s default network and its interactions with attentional networks. Studies have characterized mind wandering in healthy people, yet there is limited understanding of how this capacity is affected in clinical populations. This paper used a validated thought-sampling task to probe mind wandering capacity in two neurodegenerative disorders: behavioral variant frontotemporal dementia [(bvFTD); n = 35] and Alzheimer’s disease [(AD); n = 24], compared with older controls (n = 37). These patient groups were selected due to canonical structural and functional changes across sites of the default and frontoparietal networks and well-defined impairments in cognitive processes that support mind wandering. Relative to the controls, bvFTD patients displayed significantly reduced mind wandering capacity, offset by a significant increase in stimulus-bound thought. In contrast, AD patients demonstrated comparable levels of mind wandering to controls, in the context of a relatively subtle shift toward stimulus-/task-related forms of thought. In the patient groups, mind wandering was associated with gray matter integrity in the hippocampus/parahippocampus, striatum, insula, and orbitofrontal cortex. Resting-state functional connectivity revealed associations between mind wandering capacity and connectivity within and between regions of the frontoparietal and default networks with distinct patterns evident in patients vs. controls. These findings support a relationship between altered mind wandering capacity in neurodegenerative disorders and structural and functional integrity of the default and frontoparietal networks. This paper highlights a dimension of cognitive dysfunction not well documented in neurodegenerative disorders and validates current models of mind wandering in a clinical population.


Sign in / Sign up

Export Citation Format

Share Document