scholarly journals A NOVEL MOUSE MODEL OF EOSINOPHILIC BRONCHITIS WAS ESTABLISHED BY NON‐INVASIVE AND INVASIVE AIRWAY REACTIVITY DETECTION METHODS

Respirology ◽  
2019 ◽  
Vol 24 (S2) ◽  
pp. 60-60

2012 ◽  
Vol 50 (01) ◽  
Author(s):  
K Hochrath ◽  
A Müller ◽  
M Krawczyk ◽  
A Bücker ◽  
F Lammert


2005 ◽  
Vol 14 (1) ◽  
pp. 47-55 ◽  
Author(s):  
M. Iyer ◽  
F. B. Salazar ◽  
X. Lewis ◽  
L. Zhang ◽  
L. Wu ◽  
...  






2019 ◽  
Author(s):  
Xueyuan Hu ◽  
Yonghui Yu ◽  
Junxia Feng ◽  
Mengjiao Fu ◽  
Lupeng Dai ◽  
...  

Abstract Background: Q fever is a worldwide zoonosis caused by Coxiella burnetii and mainly transmitted by aerosols. This study aims at establishing a systematic and efficient mouse model of acute Q fever via intratracheal (IT) inoculation of aerosolized C. burnetii. Methods: BALB/c mice were infected with C. burnetii via IT route using a non-invasive aerosol pulmonary delivery device to directly place the living C. burnetii organisms into their tracheas. The bacterial loads, pathological lesions, and serological responses were analyzed in mice, and compared with those of mice infected via intraperitoneal (IP) route. Results: As early as at day three post-infection (pi) with a low dose of C. burnetii (1×10⁴ per mouse), a large amount of C. burnetii organisms were determined in blood, lungs, hearts, livers, and spleens of the mice. The inflammatory infiltration was observed in hearts and lungs of mice. Compared with mice infected via IP route, the mice infected via IT route exhibited a higher level of bacterial loads and more severe pathological lesions in hearts and lungs at day 3 and day 7 pi. Conclusions: These data indicated that IT route is more efficient than IP route to cause acute C. burnetii infection in mice. Overall, we successfully established a mouse model of C. burnetii infection via IT route, which is useful for investigations of pathogenesis and immunity of acute C. burnetii infection as well as evaluation of therapeutic drugs and preventive vaccines of Q fever.



2021 ◽  
Vol 12 ◽  
Author(s):  
Sha Liu ◽  
Hongqian Liu ◽  
Jianlong Liu ◽  
Ting Bai ◽  
Xiaosha Jing ◽  
...  

BackgroundOur aim was to provide a theoretical basis for clinicians to conduct genetic counseling and choose further prenatal diagnosis methods for pregnant women who failed non-invasive prenatal screening (NIPS).MethodsA retrospective analysis was performed on pregnant women who had failed NIPS tests.ResultsAmong the 123,291 samples, 394 pregnant women did not obtain valid results due to test failures. A total of 378 pregnant women were available for follow-up, while 16 patients were lost to follow-up. Of these 378, 135 pregnant women chose further prenatal diagnosis through amniocentesis, and one case of dysplasia was recalled for postpartum chromosome testing. The incidence rate of congenital chromosomal abnormalities in those who failed the NIPS was 3.97% (15/378), which was higher than that of the chromosomal abnormalities in the common population (1.8%). Among the pregnant women who received prenatal diagnosis, the positive rates of chromosomal abnormalities in the chromosomal microarray analysis/copy number variation sequencing (CMA/CNV-seq) group and in the karyotyping group were 15.28 and 4.76%, respectively.ConclusionPrenatal diagnosis should be strongly recommended in posttest genetic counseling for pregnant women with NIPS failures. Further, high-resolution detection methods should be recommended for additional prenatal diagnoses.



NeuroImage ◽  
2011 ◽  
Vol 55 (2) ◽  
pp. 455-461 ◽  
Author(s):  
Clare K. Underwood ◽  
Nyoman D. Kurniawan ◽  
Tim J. Butler ◽  
Gary J. Cowin ◽  
Robyn H. Wallace


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Ioannis Pavlidis ◽  
Owen B. Spiller ◽  
Gabriella Sammut Demarco ◽  
Heather MacPherson ◽  
Sarah E. M. Howie ◽  
...  

AbstractAround 40% of preterm births are attributed to ascending intrauterine infection, and Ureaplasma parvum (UP) is commonly isolated in these cases. Here we present a mouse model of ascending UP infection that resembles human disease, using vaginal inoculation combined with mild cervical injury induced by a common spermicide (Nonoxynol-9, as a surrogate for any mechanism of cervical epithelial damage). We measure bacterial load in a non-invasive manner using a luciferase-expressing UP strain, and post-mortem by qPCR and bacterial titration. Cervical exposure to Nonoxynol-9, 24 h pre-inoculation, facilitates intrauterine UP infection, upregulates pro-inflammatory cytokines, and increases preterm birth rates from 13 to 28%. Our results highlight the crucial role of the cervical epithelium as a barrier against ascending infection. In addition, we expect the mouse model will facilitate further research on the potential links between UP infection and preterm birth.



Sign in / Sign up

Export Citation Format

Share Document