scholarly journals Confidence intervals for low dimensional parameters in high dimensional linear models

Author(s):  
Cun-Hui Zhang ◽  
Stephanie S. Zhang
2020 ◽  
Vol 10 (5) ◽  
pp. 1797 ◽  
Author(s):  
Mera Kartika Delimayanti ◽  
Bedy Purnama ◽  
Ngoc Giang Nguyen ◽  
Mohammad Reza Faisal ◽  
Kunti Robiatul Mahmudah ◽  
...  

Manual classification of sleep stage is a time-consuming but necessary step in the diagnosis and treatment of sleep disorders, and its automation has been an area of active study. The previous works have shown that low dimensional fast Fourier transform (FFT) features and many machine learning algorithms have been applied. In this paper, we demonstrate utilization of features extracted from EEG signals via FFT to improve the performance of automated sleep stage classification through machine learning methods. Unlike previous works using FFT, we incorporated thousands of FFT features in order to classify the sleep stages into 2–6 classes. Using the expanded version of Sleep-EDF dataset with 61 recordings, our method outperformed other state-of-the art methods. This result indicates that high dimensional FFT features in combination with a simple feature selection is effective for the improvement of automated sleep stage classification.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
José Quero-García ◽  
Philippe Letourmy ◽  
José Antonio Campoy ◽  
Camille Branchereau ◽  
Svetoslav Malchev ◽  
...  

AbstractRain-induced fruit cracking is a major problem in sweet cherry cultivation. Basic research has been conducted to disentangle the physiological and mechanistic bases of this complex phenomenon, whereas genetic studies have lagged behind. The objective of this work was to disentangle the genetic determinism of rain-induced fruit cracking. We hypothesized that a large genetic variation would be revealed, by visual field observations conducted on mapping populations derived from well-contrasted cultivars for cracking tolerance. Three populations were evaluated over 7–8 years by estimating the proportion of cracked fruits for each genotype at maturity, at three different areas of the sweet cherry fruit: pistillar end, stem end, and fruit side. An original approach was adopted to integrate, within simple linear models, covariates potentially related to cracking, such as rainfall accumulation before harvest, fruit weight, and firmness. We found the first stable quantitative trait loci (QTLs) for cherry fruit cracking, explaining percentages of phenotypic variance above 20%, for each of these three types of cracking tolerance, in different linkage groups, confirming the high complexity of this trait. For these and other QTLs, further analyses suggested the existence of at least two-linked QTLs in each linkage group, some of which showed confidence intervals close to 5 cM. These promising results open the possibility of developing marker-assisted selection strategies to select cracking-tolerant sweet cherry cultivars. Further studies are needed to confirm the stability of the reported QTLs over different genetic backgrounds and environments and to narrow down the QTL confidence intervals, allowing the exploration of underlying candidate genes.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 743
Author(s):  
Xi Liu ◽  
Shuhang Chen ◽  
Xiang Shen ◽  
Xiang Zhang ◽  
Yiwen Wang

Neural signal decoding is a critical technology in brain machine interface (BMI) to interpret movement intention from multi-neural activity collected from paralyzed patients. As a commonly-used decoding algorithm, the Kalman filter is often applied to derive the movement states from high-dimensional neural firing observation. However, its performance is limited and less effective for noisy nonlinear neural systems with high-dimensional measurements. In this paper, we propose a nonlinear maximum correntropy information filter, aiming at better state estimation in the filtering process for a noisy high-dimensional measurement system. We reconstruct the measurement model between the high-dimensional measurements and low-dimensional states using the neural network, and derive the state estimation using the correntropy criterion to cope with the non-Gaussian noise and eliminate large initial uncertainty. Moreover, analyses of convergence and robustness are given. The effectiveness of the proposed algorithm is evaluated by applying it on multiple segments of neural spiking data from two rats to interpret the movement states when the subjects perform a two-lever discrimination task. Our results demonstrate better and more robust state estimation performance when compared with other filters.


Biometrika ◽  
2020 ◽  
Author(s):  
Oliver Dukes ◽  
Stijn Vansteelandt

Summary Eliminating the effect of confounding in observational studies typically involves fitting a model for an outcome adjusted for covariates. When, as often, these covariates are high-dimensional, this necessitates the use of sparse estimators, such as the lasso, or other regularization approaches. Naïve use of such estimators yields confidence intervals for the conditional treatment effect parameter that are not uniformly valid. Moreover, as the number of covariates grows with the sample size, correctly specifying a model for the outcome is nontrivial. In this article we deal with both of these concerns simultaneously, obtaining confidence intervals for conditional treatment effects that are uniformly valid, regardless of whether the outcome model is correct. This is done by incorporating an additional model for the treatment selection mechanism. When both models are correctly specified, we can weaken the standard conditions on model sparsity. Our procedure extends to multivariate treatment effect parameters and complex longitudinal settings.


Author(s):  
Fumiya Akasaka ◽  
Kazuki Fujita ◽  
Yoshiki Shimomura

This paper proposes the PSS Business Case Map as a tool to support designers’ idea generation in PSS design. The map visualizes the similarities among PSS business cases in a two-dimensional diagram. To make the map, PSS business cases are first collected by conducting, for example, a literature survey. The collected business cases are then classified from multiple aspects that characterize each case such as its product type, service type, target customer, and so on. Based on the results of this classification, the similarities among the cases are calculated and visualized by using the Self-Organizing Map (SOM) technique. A SOM is a type of artificial neural network that is trained using unsupervised learning to produce a low-dimensional (typically two-dimensional) view from high-dimensional data. The visualization result is offered to designers in a form of a two-dimensional map, which is called the PSS Business Case Map. By using the map, designers can figure out the position of their current business and can acquire ideas for the servitization of their business.


Sign in / Sign up

Export Citation Format

Share Document