Extending the sequences of HLA class I alleles without full‐length genomic coverage using single molecule real‐time DNA sequencing

HLA ◽  
2020 ◽  
Vol 95 (3) ◽  
pp. 196-199 ◽  
Author(s):  
Kylara B. Hassall ◽  
Katy Latham ◽  
James Robinson ◽  
Arthur Gymer ◽  
Rebecca Goodall ◽  
...  
2018 ◽  
Vol 19 (2) ◽  
pp. 136-146 ◽  
Author(s):  
Takahiro Mimori ◽  
Jun Yasuda ◽  
Yoko Kuroki ◽  
Tomoko F. Shibata ◽  
Fumiki Katsuoka ◽  
...  

2019 ◽  
Author(s):  
Anne Deslattes Mays ◽  
Marcel O. Schmidt ◽  
Garrett T. Graham ◽  
Elizabeth Tseng ◽  
Primo Baybayan ◽  
...  

AbstractHematopoietic cells are continuously replenished from progenitor cells that reside in the bone marrow. To evaluate molecular changes during this process, we analyzed the transcriptomes of freshly harvested human bone marrow progenitor (lineage-negative) and differentiated (lineage-positive) cells by single molecule, real time (SMRT) full length RNA sequencing. This analysis revealed a ∼5-fold higher number of transcript isoforms than previously detected and showed a distinct composition of individual transcript isoforms characteristic for bone marrow subpopulations. A detailed analysis of mRNA isoforms transcribed from the ANXA1 and EEF1A1 loci confirmed their distinct composition. The expression of proteins predicted from the transcriptome analysis was validated by mass spectrometry and validated previously unknown protein isoforms predicted e.g. for EEF1A1. These protein isoforms distinguished the lineage negative cell population from the lineage positive cell population. Finally, transcript isoforms expressed from paralogous gene loci (e.g. CFD, GATA2, HLA-A, B & C) also distinguished cell subpopulations but were only detectable by full length RNA sequencing. Thus, qualitatively distinct transcript isoforms from individual genomic loci separate bone marrow cell subpopulations indicating complex transcriptional regulation and protein isoform generation during hematopoiesis.


Author(s):  
Brett Bowman ◽  
Mincheol Kim ◽  
Yong-Joon Cho ◽  
Jonas Korlach

2020 ◽  
Vol 9 (3) ◽  
Author(s):  
Hallie E. Rauch ◽  
Julie Haendiges ◽  
Maria Balkey ◽  
Maria Hoffmann

We report here the closed genomes of Salmonella enterica strains from the 2017–2018 multistrain, multistate kratom outbreak using single-molecule real-time DNA sequencing. Four of the genomes consist of one circular chromosome, and the fifth has a circular chromosome and a single plasmid.


DNA Research ◽  
2019 ◽  
Vol 26 (4) ◽  
pp. 301-311 ◽  
Author(s):  
Yue Zhang ◽  
Tonny Maraga Nyong'A ◽  
Tao Shi ◽  
Pingfang Yang

Abstract Alternative splicing (AS) plays a critical role in regulating different physiological and developmental processes in eukaryotes, by dramatically increasing the diversity of the transcriptome and the proteome. However, the saturation and complexity of AS remain unclear in lotus due to its limitation of rare obtainment of full-length multiple-splice isoforms. In this study, we apply a hybrid assembly strategy by combining single-molecule real-time sequencing and Illumina RNA-seq to get a comprehensive insight into the lotus transcriptomic landscape. We identified 211,802 high-quality full-length non-chimeric reads, with 192,690 non-redundant isoforms, and updated the lotus reference gene model. Moreover, our analysis identified a total of 104,288 AS events from 16,543 genes, with alternative 3ʹ splice-site being the predominant model, following by intron retention. By exploring tissue datasets, 370 tissue-specific AS events were identified among 12 tissues. Both the tissue-specific genes and isoforms might play important roles in tissue or organ development, and are suitable for ‘ABCE’ model partly in floral tissues. A large number of AS events and isoform variants identified in our study enhance the understanding of transcriptional diversity in lotus, and provide valuable resource for further functional genomic studies.


Sign in / Sign up

Export Citation Format

Share Document