Susceptibility artifact at breast MRI due to retained fragment of localization hook‐wire hiding breast cancer

2021 ◽  
Author(s):  
Almir Galvão Vieira Bitencourt ◽  
Vinicius Cardona Felipe ◽  
Mauricio Doi ◽  
Luciana Graziano
2020 ◽  
pp. 25-31
Author(s):  
M. L. Mazo ◽  
O. E. Jacobs ◽  
O. S. Puchkova ◽  
M. V. Feldsherov ◽  
E. V. Kondratyev

The rate of detection of breast cancer by MRI, while other methods of radiological diagnosis are not sufficiently informative, ranges from 5.2 to 26.3 per cent. Suspicious breast tumors of category BI-RADS 4, 5 show morphological image-guided biopsy verification, in particular MRI with contrast. Purpose. To show the possibilities and features of carrying out MRI-guided vacuum breast biopsy, including after aesthetic breast augmentation. Material and methods. A comprehensive X-ray, ultrasound and MRI examination of 54 women aged between 28 and 70 years with different breast tumors was conducted. Of these, five were detected only by breast MRI with contrast, and were morphologically verified by MRI-guided vacuum aspiration biopsy. Results. 14 of the 54 patients with breast mass were diagnosed with breast cancer and 26 were diagnosed with benign diseases. The effectiveness of comprehensive examination and low-invasive high-tech MRI-guided procedures in early refined screening for breast cancer, including after aesthetic breast augmentation, has been demonstrated. MRI-guided vacuum-assisted breast biopsy is a fast, safe and accurate diagnostic method of morphological verification of suspicious breast tumors that do not have X-ray and ultrasound.


Author(s):  
Dalia Abdelhady ◽  
Amany Abdelbary ◽  
Ahmed H. Afifi ◽  
Alaa-eldin Abdelhamid ◽  
Hebatallah H. M. Hassan

Abstract Background Breast cancer is the most prevalent cancer among females. Dynamic contrast-enhanced MRI (DCE-MRI) breast is highly sensitive (90%) in the detection of breast cancer. Despite its high sensitivity in detecting breast cancer, its specificity (72%) is moderate. Owing to 3-T breast MRI which has the advantage of a higher signal to noise ratio and shorter scanning time rather than the 1.5-T MRI, the adding of new techniques as diffusion tensor imaging (DTI) to breast MRI became more feasible. Diffusion-weighted imaging (DWI) which tracks the diffusion of the tissue water molecule as well as providing data about the integrity of the cell membrane has been used as a valuable additional tool of DCE-MRI to increase its specificity. Based on DWI, more details about the microstructure could be detected using diffusion tensor imaging. The DTI applies diffusion in many directions so apparent diffusion coefficient (ADC) will vary according to the measured direction raising its sensitivity to microstructure elements and cellular density. This study aimed to investigate the diagnostic accuracy of DTI in the assessment of breast lesions in comparison to DWI. Results By analyzing the data of the 50 cases (31 malignant cases and 19 benign cases), the sensitivity and specificity of DWI in differentiation between benign and malignant lesions were about 90% and 63% respectively with PPV 90% and NPV 62%, while the DTI showed lower sensitivity and specificity about 81% and 51.7%, respectively, with PPV 78.9% and NPV 54.8% (P-value ≤ 0.05). Conclusion While the DWI is still the most established diffusion parameter, DTI may be helpful in the further characterization of tumor microstructure and differentiation between benign and malignant breast lesions.


Author(s):  
Roberta M. diFlorio-Alexander ◽  
Qingyuan Song ◽  
Dennis Dwan ◽  
Judith A. Austin-Strohbehn ◽  
Kristen E. Muller ◽  
...  

Abstract Purpose Obesity associated fat infiltration of organ systems is accompanied by organ dysfunction and poor cancer outcomes. Obese women demonstrate variable degrees of fat infiltration of axillary lymph nodes (LNs), and they are at increased risk for node-positive breast cancer. However, the relationship between enlarged axillary nodes and axillary metastases has not been investigated. The purpose of this study is to evaluate the association between axillary metastases and fat-enlarged axillary nodes visualized on mammograms and breast MRI in obese women with a diagnosis of invasive breast cancer. Methods This retrospective case–control study included 431 patients with histologically confirmed invasive breast cancer. The primary analysis of this study included 306 patients with pre-treatment and pre-operative breast MRI and body mass index (BMI) > 30 (201 node-positive cases and 105 randomly selected node-negative controls) diagnosed with invasive breast cancer between April 1, 2011, and March 1, 2020. The largest visible LN was measured in the axilla contralateral to the known breast cancer on breast MRI. Multivariate logistic regression models were used to assess the association between node-positive status and LN size adjusting for age, BMI, tumor size, tumor grade, tumor subtype, and lymphovascular invasion. Results A strong likelihood of node-positive breast cancer was observed among obese women with fat-expanded lymph nodes (adjusted OR for the 4th vs. 1st quartile for contralateral LN size on MRI: 9.70; 95% CI 4.26, 23.50; p < 0.001). The receiver operating characteristic curve for size of fat-enlarged nodes in the contralateral axilla identified on breast MRI had an area under the curve of 0.72 for predicting axillary metastasis, and this increased to 0.77 when combined with patient and tumor characteristics. Conclusion Fat expansion of axillary lymph nodes was associated with a high likelihood of axillary metastases in obese women with invasive breast cancer independent of BMI and tumor characteristics.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
F. Steinbruecker ◽  
A. Meyer-Baese ◽  
T. Schlossbauer ◽  
D. Cremers

Motion-induced artifacts represent a major problem in detection and diagnosis of breast cancer in dynamic contrast-enhanced magnetic resonance imaging. The goal of this paper is to evaluate the performance of a new nonrigid motion correction algorithm based on the optical flow method. For each of the small lesions, we extracted morphological and dynamical features describing both global and local shape, and kinetics behavior. In this paper, we compare the performance of each extracted feature set under consideration of several 2D or 3D motion compensation parameters for the differential diagnosis of enhancing lesions in breast MRI. Based on several simulation results, we determined the optimal motion compensation parameters. Our results have shown that motion compensation can improve the classification results. The results suggest that the computerized analysis system based on the non-rigid motion compensation technique and spatiotemporal features has the potential to increase the diagnostic accuracy of MRI mammography for small lesions and can be used as a basis for computer-aided diagnosis of breast cancer with MR mammography.


Author(s):  
Katie N Hunt

Abstract Molecular breast imaging (MBI) is a nuclear medicine technique that has evolved considerably over the past two decades. Technical advances have allowed reductions in administered doses to the point that they are now acceptable for screening. The most common radiotracer used in MBI, 99mTc-sestamibi, has a long history of safe use. Biopsy capability has become available in recent years, with early clinical experience demonstrating technically successful biopsies of MBI-detected lesions. MBI has been shown to be an effective supplemental screening tool in women with dense breasts and is also utilized for breast cancer staging, assessment of response to neoadjuvant chemotherapy, problem solving, and as an alternative to breast MRI in women who have a contraindication to MRI. The degree of background parenchymal uptake on MBI shows promise as a tool for breast cancer risk stratification. Radiologist interpretation is guided by a validated MBI lexicon that mirrors the BI-RADS lexicon. With short interpretation times, a fast learning curve for radiologists, and a substantially lower cost than breast MRI, MBI provides many benefits in the practices in which it is utilized. This review will discuss the current state of MBI technology, clinical applications of MBI, MBI interpretation, radiation dose associated with MBI, and the future of MBI.


Sign in / Sign up

Export Citation Format

Share Document