scholarly journals Sequential gene activation and gene imprinting during early embryo development in maize

2018 ◽  
Vol 93 (3) ◽  
pp. 445-459 ◽  
Author(s):  
Dexuan Meng ◽  
Jianyu Zhao ◽  
Cheng Zhao ◽  
Haishan Luo ◽  
Mujiao Xie ◽  
...  
2009 ◽  
Vol 21 (1) ◽  
pp. 112
Author(s):  
I. Choi ◽  
K. H. S. Campbell

After fertilization, early embryo development is dependent upon maternally inherited proteins and protein synthesised from maternal mRNA until zygotic gene activation (ZGA) occurs. The transition of transcriptional activity from maternal to embryonic control occurs with the activation of rRNA genes and the formation of the nucleolus at the 8- to 16-cell stage that coincides with a prolonged fourth cell cycle in bovine and ovine embryos. However, previous studies have reported a shift in the longest cell cycle (fifth cell cycle) in bovine somatic cell nuclear transfer (SCNT) embryos, suggesting that the major genome activation is delayed, possibly due to incomplete changes in chromatin structure such as hypermethylation and hypoacetylation of histone (Memili and First 2000 Zygote 8, 87–96; Holm et al. 2003 Cloning Stem Cells 5, 133–142). Although global gene expression profile studies have been carried out in somatic cell nuclear transfer embryos, little is known about the expression of genes which can alter chromatin structure in early embryo development and possibly effect ZGA. To determine whether epigenetic reprogramming of donor nuclei affected ZGA and expression profiles in SCNT embryos, ZBTB33 (zinc finger and BTB domain containing 33, also known as kaiso, a methy-CpG specific repressor), BRG1(brahma-related gene 1, SWI/SNF family of the ATP-dependent chromatin remodeling complexes), JMJD1A (jumonji domain containing 1A, H3K9me2/1-specific demethylase), JMJD1C (putative H3K9-specific demethylase), and JMJD2C (H3K9me3-specific demethylase) were examined by RT-PCR at different developmental stages [germinal vesicle (GV), metaphase II (MII), 8- to 16-cell, 16- to 32-cell, and blastocyst in both parthenogenetic and SCNT embryos]. All genes were detected in parthenogenetic and SCNT blastocyts, and ZBTB33 was also expressed in all embryos at all stages tested. However, the onset of expression of JMJD1C, containing POU5F1 binding site at 5′-promoter region and BRG1 required for ZGA are delayed in SCNT embryos as compared to parthenotes (16- v. 8-cell, and blastoocyst v. 16-cell stage). Furthermore, JMJD2C containing NANOG binding sites at the 3′-flanking region was expressed in GV and MII oocytes and parthenogenetic blastocysts, whereas in SCNT embryos, JMJD2C was only observed from the 16-cell stage onwards. Interestingly, JMJD1A, which is positively regulated by POU5F1, was not detected in GV and MII oocytes but was present in blastocyst stage embryos of both groups. Taken together, these results suggest that incomplete epigenetic modifications of genomic DNA and histones lead to a delayed onset of ZGA which may affect further development and establishment of totipotency. Subsequently, aberrant expression patterns reported previously in SCNT embryos may be attributed to improper expression of histone H3K9 and H3K4 demethylase genes during early embryo development.


2019 ◽  
Author(s):  
Isabel Gómez-Redondo ◽  
Priscila Ramos-Ibeas ◽  
Eva Pericuesta ◽  
Benjamín Planells ◽  
Raul Fernández-González ◽  
...  

2021 ◽  
Author(s):  
Zhen Sun ◽  
Hua Yu ◽  
Jing Zhao ◽  
Tianyu Tan ◽  
Hongru Pan ◽  
...  

AbstractLIN28 is an RNA binding protein with important roles in early embryo development, stem cell differentiation/reprogramming, tumorigenesis and metabolism. Previous studies have focused mainly on its role in the cytosol where it interacts with Let-7 microRNA precursors or mRNAs, and few have addressed LIN28’s role within the nucleus. Here, we show that LIN28 displays dynamic temporal and spatial expression during murine embryo development. Maternal LIN28 expression drops upon exit from the 2-cell stage, and zygotic LIN28 protein is induced at the forming nucleolus during 4-cell to blastocyst stage development, to become dominantly expressed in the cytosol after implantation. In cultured pluripotent stem cells (PSCs), loss of LIN28 led to nucleolar stress and activation of a 2-cell/4-cell-like transcriptional program characterized by the expression of endogenous retrovirus genes. Mechanistically, LIN28 binds to small nucleolar RNAs and rRNA to maintain nucleolar integrity, and its loss leads to nucleolar phase separation defects, ribosomal stress and activation of P53 which in turn binds to and activates 2C transcription factor Dux. LIN28 also resides in a complex containing the nucleolar factor Nucleolin (NCL) and the transcriptional repressor TRIM28, and LIN28 loss leads to reduced occupancy of the NCL/TRIM28 complex on the Dux and rDNA loci, and thus de-repressed Dux and reduced rRNA expression. Lin28 knockout cells with nucleolar stress are more likely to assume a slowly cycling, translationally inert and anabolically inactive state, which is a part of previously unappreciated 2C-like transcriptional program. These findings elucidate novel roles for nucleolar LIN28 in PSCs, and a new mechanism linking 2C program and nucleolar functions in PSCs and early embryo development.


2016 ◽  
Vol 27 (5) ◽  
pp. 768-775 ◽  
Author(s):  
Xue-Shan Ma ◽  
Fei Lin ◽  
Zhong-Wei Wang ◽  
Meng-Wen Hu ◽  
Lin Huang ◽  
...  

Geminin controls proper centrosome duplication, cell division, and differentiation. We investigated the function of geminin in oogenesis, fertilization, and early embryo development by deleting the geminin gene in oocytes from the primordial follicle stage. Oocyte-specific disruption of geminin results in low fertility in mice. Even though there was no evident anomaly of oogenesis, oocyte meiotic maturation, natural ovulation, or fertilization, early embryo development and implantation were impaired. The fertilized eggs derived from mutant mice showed developmental delay, and many were blocked at the late zygote stage. Cdt1 protein was decreased, whereas Chk1 and H2AX phosphorylation was increased, in fertilized eggs after geminin depletion. Our results suggest that disruption of maternal geminin may decrease Cdt1 expression and cause DNA rereplication, which then activates the cell cycle checkpoint and DNA damage repair and thus impairs early embryo development.


PLoS ONE ◽  
2016 ◽  
Vol 11 (9) ◽  
pp. e0162272 ◽  
Author(s):  
Wei Zhao ◽  
Feng Yao ◽  
Mengchen Zhang ◽  
Ting Jing ◽  
Shuang Zhang ◽  
...  

Author(s):  
Xavier Ferraretto ◽  
Karima Hammas ◽  
Marie-Astrid Llabador ◽  
Solenne Gricourt ◽  
Julie Labrosse ◽  
...  

Author(s):  
Shuang Cai ◽  
Shuang Quan ◽  
Guangxin Yang ◽  
Meixia Chen ◽  
Qianhong Ye ◽  
...  

ABSTRACTWith the increasing maternal age and the use of assisted reproductive technology in various countries worldwide, the influence of epigenetic modification on embryonic development is increasingly notable and prominent. Epigenetic modification disorders caused by various nutritional imbalance would cause embryonic development abnormalities and even have an indelible impact on health in adulthood. In this scoping review, we summarize the main epigenetic modifications in mammals and the synergies among different epigenetic modifications, especially DNA methylation, histone acetylation, and histone methylation. We performed an in-depth analysis of the regulation of various epigenetic modifications on mammals from zygote formation to cleavage stage and blastocyst stage, and reviewed the modifications of key sites and their potential molecular mechanisms. In addition, we discuss the effects of nutrition (protein, lipids, and one-carbon metabolism) on epigenetic modification in embryos and emphasize the importance of various nutrients in embryonic development and epigenetics during pregnancy. Failures in epigenetic regulation have been implicated in mammalian and human early embryo loss and disease. With the use of reproductive technologies, it is becoming even more important to establish developmentally competent embryos. Therefore, it is essential to evaluate the extent to which embryos are sensitive to these epigenetic modifications and nutrition status. Understanding the epigenetic regulation of early embryo development will help us make better use of reproductive technologies and nutrition regulation to improve reproductive health in mammals.


Endocrinology ◽  
2013 ◽  
Vol 154 (1) ◽  
pp. 222-231 ◽  
Author(s):  
V. Dinopoulou ◽  
G. A. Partsinevelos ◽  
D. Mavrogianni ◽  
E. Anagnostou ◽  
P. Drakakis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document