scholarly journals Single organelle dynamics linked to 3D structure by correlative live-cell imaging and 3D electron microscopy

Traffic ◽  
2018 ◽  
Vol 19 (5) ◽  
pp. 354-369 ◽  
Author(s):  
Job Fermie ◽  
Nalan Liv ◽  
Corlinda ten Brink ◽  
Elly G. van Donselaar ◽  
Wally H. Müller ◽  
...  
mSphere ◽  
2016 ◽  
Vol 1 (4) ◽  
Author(s):  
H. M. van der Schaar ◽  
C. E. Melia ◽  
J. A. C. van Bruggen ◽  
J. R. P. M. Strating ◽  
M. E. D. van Geenen ◽  
...  

ABSTRACT Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for genome replication. Electron microscopy has revealed the morphology of enterovirus ROs, and immunofluorescence studies have been conducted to investigate their origin and formation. Yet, immunofluorescence analysis of fixed cells results in a rather static view of RO formation, and the results may be compromised by immunolabeling artifacts. While live-cell imaging of ROs would be preferred, enteroviruses encoding a membrane-anchored viral protein fused to a large fluorescent reporter have thus far not been described. Here, we tackled this constraint by introducing a small tag from a split-GFP system into an RO-resident enterovirus protein. This new tool bridges a methodological gap by circumventing the need for immunolabeling fixed cells and allows the study of the dynamics and formation of enterovirus ROs in living cells. Like all other positive-strand RNA viruses, enteroviruses generate new organelles (replication organelles [ROs]) with a unique protein and lipid composition on which they multiply their viral genome. Suitable tools for live-cell imaging of enterovirus ROs are currently unavailable, as recombinant enteroviruses that carry genes that encode RO-anchored viral proteins tagged with fluorescent reporters have not been reported thus far. To overcome this limitation, we used a split green fluorescent protein (split-GFP) system, comprising a large fragment [strands 1 to 10; GFP(S1-10)] and a small fragment [strand 11; GFP(S11)] of only 16 residues. The GFP(S11) (GFP with S11 fragment) fragment was inserted into the 3A protein of the enterovirus coxsackievirus B3 (CVB3), while the large fragment was supplied by transient or stable expression in cells. The introduction of GFP(S11) did not affect the known functions of 3A when expressed in isolation. Using correlative light electron microscopy (CLEM), we showed that GFP fluorescence was detected at ROs, whose morphologies are essentially identical to those previously observed for wild-type CVB3, indicating that GFP(S11)-tagged 3A proteins assemble with GFP(S1-10) to form GFP for illumination of bona fide ROs. It is well established that enterovirus infection leads to Golgi disintegration. Through live-cell imaging of infected cells expressing an mCherry-tagged Golgi marker, we monitored RO development and revealed the dynamics of Golgi disassembly in real time. Having demonstrated the suitability of this virus for imaging ROs, we constructed a CVB3 encoding GFP(S1-10) and GFP(S11)-tagged 3A to bypass the need to express GFP(S1-10) prior to infection. These tools will have multiple applications in future studies on the origin, location, and function of enterovirus ROs. IMPORTANCE Enteroviruses induce the formation of membranous structures (replication organelles [ROs]) with a unique protein and lipid composition specialized for genome replication. Electron microscopy has revealed the morphology of enterovirus ROs, and immunofluorescence studies have been conducted to investigate their origin and formation. Yet, immunofluorescence analysis of fixed cells results in a rather static view of RO formation, and the results may be compromised by immunolabeling artifacts. While live-cell imaging of ROs would be preferred, enteroviruses encoding a membrane-anchored viral protein fused to a large fluorescent reporter have thus far not been described. Here, we tackled this constraint by introducing a small tag from a split-GFP system into an RO-resident enterovirus protein. This new tool bridges a methodological gap by circumventing the need for immunolabeling fixed cells and allows the study of the dynamics and formation of enterovirus ROs in living cells.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 263-263
Author(s):  
Marjon J Mourik ◽  
Karine M Valentijn ◽  
Jack A Valentijn ◽  
Jan Voorberg ◽  
Abraham J Koster ◽  
...  

Abstract Abstract 263 In response to vascular injury, endothelial cells rapidly secrete high molecular weight multimers of the coagulation protein Von Willebrand factor (VWF). Once expelled from the cells, VWF unfurls in long strings that bind platelets from the bloodstream to induce primary hemostasis. VWF secreted upon stimulation is released from specialized storage compartments called Weibel Palade bodies (WPB) which have a typical rod or cigar shape. They emerge from the Trans Golgi network in a process driven by the formation of helical tubules consisting of VWF multimers and the VWF propeptide. When WPBs undergo exocytosis and release VWF, rapid structural changes occur which eventually result in platelet capturing VWF strings. It has been postulated that the tubular storage of VWF in WPBs is required for sufficient unfolding of the protein during string formation as agents disrupting the VWF tubules were shown to result in less strings. Recently we described a novel structure involved in VWF exocytosis which is formed only upon stimulation. We refer to this structure as a “secretory pod” as it seemed to derive from multiple WPBs and was identified as a VWF release site where strings seemed to be formed. By transmission electron microscopy (TEM) we identified this structure to be a membrane-delimited organelle containing filamentous material resembling unfurled VWF. The VWF tubules as seen in WPBs are absent in secretory pods suggesting that tubular packaging of VWF is not essential for sufficient release and string formation. To study the formation of secretory pods and the subsequent release and remodeling of VWF, several imaging techniques were used such as live-cell imaging and correlative light and electron microscopy. We expressed propeptide-EGFP in endothelial cells to label the WPBs and stimulated them with PMA. By live-cell imaging we visualized the exocytotic events. We observed, apart from single WPB exocytosis, the formation of secretory pods which occurred by the coalescence of several WPBs. In some cases the individual WPBs rounded up first, before they joined into one round structure while in other cases the coalescence event seemed to happen at once. After coalescence, fusion with the plasma membrane occurred to release the pooled VWF which resulted in the disappearance of the fluorescent signal as the propeptide rapidly diffused into the extracellular medium. How the secreted VWF is remodeled after secretion into VWF strings was studied by correlative light and electron microscopy. We correlated confocal pictures of stimulated endothelial cells, which were stained with VWF specific fluorescent antibodies, to consecutive TEM sections. We found that fluorescently labeled VWF dots that were connected to strings, correlated to secretory pods but also to globular mass of secreted VWF. Interestingly, when we analyzed consecutive EM sections, the globular masses were found to originate from the secretory pods. From the globular masses we also observed deriving strings indicating that once VWF is expelled, remodeling occurs independently from secretion. We hypothesize that fluid flow remodels the secreted globular VWF mass into strings. To study this we stimulated endothelial cells under flow. The intracellular VWF pool in the WPBs was labeled green by transient expression of propeptide-EGFP and the secreted VWF was labeled red with strongly diluted red fluorescent VWF specific antibodies in the perfusate. Using live-cell imaging we observed that upon fusion of EGFP labeled WPBs, the green signal transformed into a red signal revealing dots of labeled secreted VWF. These dots rolled, in the direction of the flow, to the edge of the cell where they aggregated and only then formed strings. In non-transfected cells we performed similar experiments and there we observed the same pattern, confirming even more the VWF aggregation and string formation at the edges of the cell. In conclusion, we demonstrated that several WPBs can fuse with each other to form secretory pods and that VWF is secreted as a globular mass of protein. From these globular masses strings originated indicating that string formation occurs independently from the mechanism of secretion in which the tubular packaging of VWF in WPBs does not seem to be of importance. Disclosures: No relevant conflicts of interest to declare.


2019 ◽  
Author(s):  
Mohammad Zeeshan ◽  
David J. P. Ferguson ◽  
Steven Abel ◽  
Alana Burrrell ◽  
Edward Rea ◽  
...  

AbstractEukaryotic flagella are conserved microtubule-based organelles that drive cell motility. Plasmodium, the causative agent of malaria, has a single flagellate stage: the male gamete in the mosquito. Three rounds of endomitotic division together with an unusual mode of flagellum assembly rapidly produce eight motile gametes. These processes are tightly coordinated but their regulation is poorly understood. To understand this important developmental stage, we studied the function and location of the microtubule-based motor kinesin-8B, using gene-targeting, electron microscopy and live cell imaging. Deletion of the kinesin-8B gene showed no effect on mitosis but disrupted 9+2 axoneme assembly and flagellum formation during male gamete development and also completely ablated parasite transmission. Live cell imaging showed that kinesin-8B-GFP did not colocalise with kinetochores in the nucleus but instead revealed dynamic, cytoplasmic localisation with the basal bodies and the assembling axoneme during flagellum formation. We thus uncovered an unexpected role for kinesin-8B in parasite flagellum formation that is vital for the parasite life cycle.


2018 ◽  
Author(s):  
Xiaohe Tian ◽  
Cesare De Pace ◽  
Lorena Ruiz-Perez ◽  
Bo Chen ◽  
Rina Su ◽  
...  

We report a versatile cyclometalated Iridium (III) complex probe that achieves synchronous fluorescence-electron microscopy correlation to reveal microtubule ultrastructure in cells. The selective insertion of probe between repeated α and β units of microtubule triggers remarkable fluorescent enhancement, and high TEM contrast due to the presence of heavy Ir ions. The highly photostable probe allows live cell imaging of tubulin localization and motion during cell division with an resolution of 20 nm, and under TEM imaging reveals the αβ unit interspace of 45Å of microtubule in cells.


mBio ◽  
2017 ◽  
Vol 8 (1) ◽  
Author(s):  
Joyce Jose ◽  
Aaron B. Taylor ◽  
Richard J. Kuhn

ABSTRACT Sindbis virus (SINV [genus Alphavirus , family Togaviridae ]) is an enveloped, mosquito-borne virus. Alphaviruses cause cytolytic infections in mammalian cells while establishing noncytopathic, persistent infections in mosquito cells. Mosquito vector adaptation of alphaviruses is a major factor in the transmission of epidemic strains of alphaviruses. Though extensive studies have been performed on infected mammalian cells, the morphological and structural elements of alphavirus replication and assembly remain poorly understood in mosquito cells. Here we used high-resolution live-cell imaging coupled with single-particle tracking and electron microscopy analyses to delineate steps in the alphavirus life cycle in both the mammalian host cell and insect vector cells. Use of dually labeled SINV in conjunction with cellular stains enabled us to simultaneously determine the spatial and temporal differences of alphavirus replication complexes (RCs) in mammalian and insect cells. We found that the nonstructural viral proteins and viral RNA in RCs exhibit distinct spatial organization in mosquito cytopathic vacuoles compared to replication organelles from mammalian cells. We show that SINV exploits filopodial extensions for virus dissemination in both cell types. Additionally, we propose a novel mechanism for replication complex formation around glycoprotein-containing vesicles in mosquito cells that produced internally released particles that were seen budding from the vesicles by live imaging. Finally, by characterizing mosquito cell lines that were persistently infected with fluorescent virus, we show that the replication and assembly machinery are highly modified, and this allows continuous production of alphaviruses at reduced levels. IMPORTANCE Reemerging mosquito-borne alphaviruses cause serious human epidemics worldwide. Several structural and imaging studies have helped to define the life cycle of alphaviruses in mammalian cells, but the mode of virus replication and assembly in the invertebrate vector and mechanisms producing two disease outcomes in two types of cells are yet to be identified. Using transmission electron microscopy and live-cell imaging with dual fluorescent protein-tagged SINV, we show that while insect and mammalian cells display similarities in entry and exit, they present distinct spatial and temporal organizations in virus replication and assembly. By characterizing acutely and persistently infected cells, we provide new insights into alphavirus replication and assembly in two distinct hosts, resulting in high-titer virus production in mammalian cells and continuous virus production at reduced levels in mosquito cells—presumably a prerequisite for alphavirus maintenance in nature.


2008 ◽  
Vol 121 (15) ◽  
pp. 2540-2554 ◽  
Author(s):  
T. Haraguchi ◽  
T. Kojidani ◽  
T. Koujin ◽  
T. Shimi ◽  
H. Osakada ◽  
...  

PLoS ONE ◽  
2010 ◽  
Vol 5 (2) ◽  
pp. e9014 ◽  
Author(s):  
Coralie Spiegelhalter ◽  
Valérie Tosch ◽  
Didier Hentsch ◽  
Marc Koch ◽  
Pascal Kessler ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document