scholarly journals Ssy1 functions at the plasma membrane as a receptor of extracellular amino acids independent of plasma membrane‐endoplasmic reticulum junctions

Traffic ◽  
2019 ◽  
Vol 20 (10) ◽  
pp. 775-784 ◽  
Author(s):  
Andreas Ring ◽  
António Martins ◽  
Per O. Ljungdahl
1992 ◽  
Vol 286 (1) ◽  
pp. 173-177 ◽  
Author(s):  
I D Waddell ◽  
A G Zomerschoe ◽  
M W Voice ◽  
A Burchell

Antibodies raised against a 52 kDa rat liver microsomal glucose-transport protein were used to screen a rat liver cDNA library. Six positive clones were isolated. Two clones were found to be identical with the liver plasma-membrane glucose-transport protein termed GLUT 2. The sequence of the four remaining clones indicates that they encode a unique microsomal facilitative glucose-transport protein which we have termed GLUT 7. Sequence analysis revealed that the largest GLUT 7 clone was 2161 bp in length and encodes a protein of 528 amino acids. The deduced amino acid sequence of GLUT 7 shows 68% identity with the deduced amino acid sequence of rat liver GLUT 2. The GLUT 7 sequence is six amino acids longer than rat liver GLUT 2, and the extra six amino acids at the C-terminal end contain a consensus motif for retention of membrane-spanning proteins in the endoplasmic reticulum. When the largest GLUT 7 clone was transfected into COS 7 cells the expressed protein was found in the endoplasmic reticulum and nuclear membrane, but not in the plasma membrane. Microsomes isolated from the transfected COS 7 cells demonstrated an increase in their microsomal glucose-transport capacity, demonstrating that the GLUT 7 clone encodes a functional endoplasmic-reticulum glucose-transport protein.


2006 ◽  
Vol 26 (7) ◽  
pp. 2697-2715 ◽  
Author(s):  
Yaping Gu ◽  
Xiu Luo ◽  
Subhabrata Basu ◽  
Hisashi Fujioka ◽  
Neena Singh

ABSTRACT The C-transmembrane form of prion protein (CtmPrP) has been implicated in prion disease pathogenesis, but the factors underlying its biogenesis and cyotoxic potential remain unclear. Here we show that CtmPrP interferes with cytokinesis in cell lines where it is transported to the plasma membrane. These cells fail to separate following cell division, assume a variety of shapes and sizes, and contain multiple nuclei, some of which are pyknotic. Furthermore, the synthesis and transport of CtmPrP to the plasma membrane are modulated through a complex interaction between cis- and trans-acting factors and the endoplasmic reticulum translocation machinery. Thus, insertion of eight amino acids before or within the N region of the N signal peptide (N-SP) of PrP results in the exclusive synthesis of CtmPrP regardless of the charge conferred to the N region. Subsequent processing and transport of CtmPrP are modulated by specific amino acids in the N region of the N-SP and by the cell line of expression. Although the trigger for CtmPrP upregulation in naturally occurring prion disorders remains elusive, these data highlight the underlying mechanisms of CtmPrP biogenesis and neurotoxicity and reinforce the idea that CtmPrP may serve as the proximate cause of neuronal death in certain prion disorders.


Author(s):  
M. A. Hayat

Potassium permanganate has been successfully employed to study membranous structures such as endoplasmic reticulum, Golgi, plastids, plasma membrane and myelin sheath. Since KMnO4 is a strong oxidizing agent, deposition of manganese or its oxides account for some of the observed contrast in the lipoprotein membranes, but a good deal of it is due to the removal of background proteins either by dehydration agents or by volatalization under the electron beam. Tissues fixed with KMnO4 exhibit somewhat granular structure because of the deposition of large clusters of stain molecules. The gross arrangement of membranes can also be modified. Since the aim of a good fixation technique is to preserve satisfactorily the cell as a whole and not the best preservation of only a small part of it, a combination of a mixture of glutaraldehyde and acrolein to obtain general preservation and KMnO4 to enhance contrast was employed to fix plant embryos, green algae and fungi.


Author(s):  
R. W. Yaklich ◽  
E. L. Vigil ◽  
W. P. Wergin

The legume seed coat is the site of sucrose unloading and the metabolism of imported ureides and synthesis of amino acids for the developing embryo. The cell types directly responsible for these functions in the seed coat are not known. We recently described a convex layer of tissue on the inside surface of the soybean (Glycine max L. Merr.) seed coat that was termed “antipit” because it was in direct opposition to the concave pit on the abaxial surface of the cotyledon. Cone cells of the antipit contained numerous hypertrophied Golgi apparatus and laminated rough endoplasmic reticulum common to actively secreting cells. The initial report by Dzikowski (1936) described the morphology of the pit and antipit in G. max and found these structures in only 68 of the 169 seed accessions examined.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document