Reduction of biological response modifiers in the supernatant of washed paediatric red blood cells

Vox Sanguinis ◽  
2016 ◽  
Vol 111 (4) ◽  
pp. 365-373 ◽  
Author(s):  
Y. S. Loh ◽  
S. Tan ◽  
M. Kwok ◽  
M. J. Stark ◽  
D. C. Marks
Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 3655-3655 ◽  
Author(s):  
Melinda M Dean ◽  
Luke D Samson ◽  
Kelly Rooks ◽  
Jesse Fryk ◽  
Shoma Baidya ◽  
...  

Abstract Introduction During routine storage, packed red blood cells (PRBC) undergo numerous biochemical and biophysical changes collectively referred to as the “RBC storage lesion”. A number of factors reported to accumulate during the routine storage of PRBCs are hypothesized to mediate inflammatory cell responses and contribute to poor patient outcomes following transfusion. In addition, donor variability in red blood cell (RBC) characteristics and onset of the storage lesion has been reported. We investigated changes in levels of potential biological response modifies in the supernatant (SN) of PRBC relevant to storage, and, variance between donations. Methods Cytometric bead array was utilised to quantify a panel of 32 potential biological response modifiers (BRMs) in the SN of PRBC during storage. Potential BRMS were analysed in the SN of 8 leukodepleted PRBC units at weekly intervals (D2, D7, D14, D21, D28, D35, D42). The CBA panel was comprised of soluble(s) CD40 Ligand, sCD62E, sCD62L, sCD14, sCD54 (ICAM-1), sCD106 (VCAM-1), CXCL9, VEGF, Fractalkine (CX3CL1), IL-1β, IL-6, IL-8, IL-10, IL-12p70, TNF-α, MIP-1α, MIP-1β, IP-10, RANTES, sCD62P, IL-1α, IL-2, IL-3, IL-4, IL-5, IL-7, IL-9, IL-13, IFN-α, IFN-γ, angiogenin, MCP-1. Storage related changes were analysed using ANOVA (95% CI). Donor variance was indicated by fold difference and range. “High” sub population of donations compared to remaining donations at each time point using Mann-Whitney (95% CI). Results Of the 32 potential BRMs studied, angiogenin, sCD14, sCD106 (VCAM-1), sCD62L, sCD62P, ICAM-1, IL-1α, IP-10, RANTES and IL-9 were consistently detected in all units throughout the time course. There was no evidence of a storage related increase in these biological mediators during storage of the PRBC, although angiogenin levels significantly declined during storage (P<0.001, ANOVA). Of particular interest, the concentrations of these nine biological mediators varied greatly between the individual PRBC units. ICAM-1, VCAM-1 and IL-1α concentrations each varied 10 fold between units (range 1000 – 10 000 pg/mL for each), sCD14 varied 5 fold (range 20 000 - 100 000 pg/mL), sCD62L varied 4.4 fold (range 9000 – 40 000 pg/mL), and sCD62P varied 6.5 fold (range 200 -1300 pg/ml). In addition, it was apparent that a sub population (3/8) of the units assessed consistently had the highest levels of ICAM-1, sCD106 (VCAM-1), sCD14, sCD62L, IL-1α, sCD62P and angiogenin. For sCD62P, in particular, this “high” sub population had significantly different levels of sCD62P at each time point compared to the other five units (P<0.05 at each time point). The remaining BRMs studied were at the limits of detection (<20 pg/mL) for every unit at each time point, and no storage related changes were evident. Conclusions There was minimal change in the BRMs studied relevant to storage duration of the PRBC units. The most notable differences in the levels of biological mediators present in PRBC SN were due to donor-to-donor variation. These data suggest high levels of BRMs and potential immune modulation in transfusion recipients may be the result of donor-associated differences rather than storage-associated differences in blood components. Disclosures: No relevant conflicts of interest to declare.


Author(s):  
Kosuke Ueda ◽  
Hiroto Washida ◽  
Nakazo Watari

IntroductionHemoglobin crystals in the red blood cells were electronmicroscopically reported by Fawcett in the cat myocardium. In the human, Lessin revealed crystal-containing cells in the periphral blood of hemoglobin C disease patients. We found the hemoglobin crystals and its agglutination in the erythrocytes in the renal cortex of the human renal lithiasis, and these patients had no hematological abnormalities or other diseases out of the renal lithiasis. Hemoglobin crystals in the human erythrocytes were confirmed to be the first case in the kidney.Material and MethodsTen cases of the human renal biopsies were performed on the operations of the seven pyelolithotomies and three ureterolithotomies. The each specimens were primarily fixed in cacodylate buffered 3. 0% glutaraldehyde and post fixed in osmic acid, dehydrated in graded concentrations of ethanol, and then embedded in Epon 812. Ultrathin sections, cut on LKB microtome, were doubly stained with uranyl acetate and lead citrate.


Author(s):  
John A. Trotter

Hemoglobin is the specific protein of red blood cells. Those cells in which hemoglobin synthesis is initiated are the earliest cells that can presently be considered to be committed to erythropoiesis. In order to identify such early cells electron microscopically, we have made use of the peroxidatic activity of hemoglobin by reacting the marrow of erythropoietically stimulated guinea pigs with diaminobenzidine (DAB). The reaction product appeared as a diffuse and amorphous electron opacity throughout the cytoplasm of reactive cells. The detection of small density increases of such a diffuse nature required an analytical method more sensitive and reliable than the visual examination of micrographs. A procedure was therefore devised for the evaluation of micrographs (negatives) with a densitometer (Weston Photographic Analyzer).


Author(s):  
Victor Tsutsumi ◽  
Adolfo Martinez-Palomo ◽  
Kyuichi Tanikawa

The protozoan parasite Entamoeba histolytica is the causative agent of amebiasis in man. The trophozoite or motile form is a highly dynamic and pleomorphic cell with a great capacity to destroy tissues. Moreover, the parasite has the singular ability to phagocytize a variety of different live or death cells. Phagocytosis of red blood cells by E. histolytica trophozoites is a complex phenomenon related with amebic pathogenicity and nutrition.


Author(s):  
D.J.P. Ferguson ◽  
A.R. Berendt ◽  
J. Tansey ◽  
K. Marsh ◽  
C.I. Newbold

In human malaria, the most serious clinical manifestation is cerebral malaria (CM) due to infection with Plasmodium falciparum. The pathology of CM is thought to relate to the fact that red blood cells containing mature forms of the parasite (PRBC) cytoadhere or sequester to post capillary venules of various tissues including the brain. This in vivo phenomenon has been studied in vitro by examining the cytoadherence of PRBCs to various cell types and purified proteins. To date, three Ijiost receptor molecules have been identified; CD36, ICAM-1 and thrombospondin. The specific changes in the PRBC membrane which mediate cytoadherence are less well understood, but they include the sub-membranous deposition of electron-dense material resulting in surface deformations called knobs. Knobs were thought to be essential for cytoadherence, lput recent work has shown that certain knob-negative (K-) lines can cytoadhere. In the present study, we have used electron microscopy to re-examine the interactions between K+ PRBCs and both C32 amelanotic melanoma cells and human umbilical vein endothelial cells (HUVEC).We confirm previous data demonstrating that C32 cells possess numerous microvilli which adhere to the PRBC, mainly via the knobs (Fig. 1). In contrast, the HUVEC were relatively smooth and the PRBCs appeared partially flattened onto the cell surface (Fig. 2). Furthermore, many of the PRBCs exhibited an invagination of the limiting membrane in the attachment zone, often containing a cytoplasmic process from the endothelial cell (Fig. 2).


2001 ◽  
Vol 120 (5) ◽  
pp. A356-A357
Author(s):  
M FURUKAWA ◽  
Y MAGAMI ◽  
D NAKAYAMA ◽  
F MORIYASU ◽  
J PARK ◽  
...  

1990 ◽  
Vol 63 (01) ◽  
pp. 112-121 ◽  
Author(s):  
David N Bell ◽  
Samira Spain ◽  
Harry L Goldsmith

SummaryThe effect of red blood cells, rbc, and shear rate on the ADPinduced aggregation of platelets in whole blood, WB, flowing through polyethylene tubing was studied using a previously described technique (1). Effluent WB was collected into 0.5% glutaraldehyde and the red blood cells removed by centrifugation through Percoll. At 23°C the rate of single platelet aggregtion was upt to 9× greater in WB than previously found in platelet-rich plasma (2) at mean tube shear rates Ḡ = 41.9,335, and 1,920 s−1, and at both 0.2 and 1.0 µM ADP. At 0.2 pM ADP, the rate of aggregation was greatest at Ḡ = 41.9 s−1 over the first 1.7 s mean transit time through the flow tube, t, but decreased steadily with time. At Ḡ ≥335 s−1 the rate of aggregation increased between t = 1.7 and 8.6 s; however, aggregate size decreased with increasing shear rate. At 1.0 µM ADP, the initial rate of single platelet aggregation was still highest at Ḡ = 41.9 s1 where large aggregates up to several millimeters in diameter containing rbc formed by t = 43 s. At this ADP concentration, aggregate size was still limited at Ḡ ≥335 s−1 but the rate of single platelet aggregation was markedly greater than at 0.2 pM ADP. By t = 43 s, no single platelets remained and rbc were not incorporated into aggregates. Although aggregate size increased slowly, large aggregates eventually formed. White blood cells were not significantly incorporated into aggregates at any shear rate or ADP concentration. Since the present technique did not induce platelet thromboxane A2 formation or cause cell lysis, these experiments provide evidence for a purely mechanical effect of rbc in augmenting platelet aggregation in WB.


Sign in / Sign up

Export Citation Format

Share Document