A microfluidic analysis of thrombus formation in reconstituted whole blood samples comparing spray‐dried plasma versus fresh frozen plasma

Vox Sanguinis ◽  
2020 ◽  
Author(s):  
Rachel S. Bercovitz ◽  
Caleb S. Drew ◽  
Chana L. Bushee ◽  
Mark A. Popovsky ◽  
Kenneth D. Friedman ◽  
...  
2002 ◽  
Vol 96 (5) ◽  
pp. 1115-1122 ◽  
Author(s):  
Nauder Faraday ◽  
Eliseo Guallar ◽  
Valerie A. Sera ◽  
Everlie D. Bolton ◽  
Robert B. Scharpf ◽  
...  

Background A hemostatic monitor capable of rapid, accurate detection of clinical coagulopathy within the operating room could improve management of bleeding after cardiopulmonary bypass (CPB). The Clot Signature Analyzer is a hemostatometer that measures global hemostasis in whole blood. The authors hypothesized that point-of-care hemostatometry could detect a clinical coagulopathic state in cardiac surgical patients. Methods Fifty-seven adult patients scheduled for a variety of elective cardiac surgical procedures were studied. Anesthesia, CPB, heparin anticoagulation, protamine reversal, and transfusion for post-CPB bleeding were all managed by standardized protocol. Clinical coagulopathy was defined by the need for platelet or fresh frozen plasma transfusion. The Clot Signature Analyzer collagen-induced thrombus formation (CITF) assay measured platelet-mediated hemostasis in vitro. The activated clotting time, platelet count, prothrombin time, activated partial thromboplastin time, and fibrinogen concentration were also measured. Results The postprotamine CITF was greater in patients who required hemostatic transfusion than in those who did not (17.6 +/- 8.0 min vs. 10.5 +/- 5.7 min, respectively; P < 0.01). Postprotamine CITF values were highly correlated with platelet and fresh frozen plasma transfusion (Spearman r = 0.50, P < 0.001 and r = 0.40, P < 0.005, respectively). Receiver operator characteristic curves showed a highly significant relation between the postprotamine CITF and intraoperative platelet and fresh frozen plasma transfusion (area under the curve, 0.78-0.81, P < 0.005) with 60-80% sensitivity, specificity, positive and negative predictive values at cutoffs of 12-14 min. Logistic regression demonstrated that the CITF was independently predictive of post-CPB hemostatic transfusion, but standard hemostatic assays were not. Conclusions The Clot Signature Analyzer CITF detects a clinical coagulopathic state after CPB and is independently predictive of the need for hemostatic transfusion. Hemostatometry has potential utility for monitoring hemostasis in cardiac surgery.


Vox Sanguinis ◽  
1996 ◽  
Vol 71 (3) ◽  
pp. 150-154 ◽  
Author(s):  
D. P. Allersma ◽  
R. M. R. Imambaks ◽  
L. J. Meerhof

1998 ◽  
Vol 89 (Supplement) ◽  
pp. 1333A
Author(s):  
Thomas Frietsch ◽  
Heiko Fessler ◽  
Arnulf Lorentz ◽  
Michael Kirschfink ◽  
Klaus F. Waschke

2015 ◽  
Vol 199 (2) ◽  
pp. 608-614 ◽  
Author(s):  
Joao B. Rezende-Neto ◽  
Gilberto P. Rodrigues ◽  
Thiago A. Lisboa ◽  
Mario Carvalho-Junior ◽  
Maria Julia Silva ◽  
...  

Transfusion ◽  
2005 ◽  
Vol 45 (8) ◽  
pp. 1342-1348 ◽  
Author(s):  
Rebecca Cardigan ◽  
Andrew S. Lawrie ◽  
Ian J. Mackie ◽  
Lorna M. Williamson

2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Yuu Oda ◽  
Takashi Ito ◽  
Yoichiro Yamada ◽  
Tadashi Koga ◽  
Tomoka Nagasato ◽  
...  

Abstract Background Rupture of an atherosclerotic plaque and subsequent exposure of the subendothelial prothrombotic matrix to blood cause arterial thrombosis. Circulating platelets play an indispensable role in the growth of arterial thrombi partially owing to their unique ability to adhere to the subendothelial matrix and to aggregate to each other under flow conditions. Recently, the Total Thrombus-formation Analysis System (T-TAS) was developed for ex vivo analysis of the thrombogenic potential of whole blood samples under flow conditions. Despite the potential clinical utility of the T-TAS in assessing the risk for thrombosis and bleeding, reference intervals for T-TAS analysis in healthy individuals have not been determined. Methods In total, 122 whole blood samples were collected from healthy volunteers ranging in age from 25 to 45 years. T-TAS analysis and hematological, physiological, and lifestyle assessments were conducted in these subjects. Whole blood samples anticoagulated with hirudin were perfused into a collagen-coated microchip (PL chip). The time to 10 kPa and the area under the flow pressure curve up to 10 min (AUC10) were analyzed as representative variables for thrombogenic potential. Reference intervals, which were defined as 2.5–97.5 percentiles, were determined. Additionally, univariate and multivariate analyses were performed to identify factors associated with the AUC10 in the T-TAS. Results The time to 10 kPa and the AUC10 widely varied, even in healthy volunteers. The reference intervals were 1.50–4.02 min and 223.4–456.8, respectively, at a shear rate of 1500 s− 1. Univariate and multivariate analyses showed that platelet counts were most significantly associated with the AUC10 of the T-TAS. The presence of one or more cardiovascular risk factors of a high body mass index, a high pulse pressure, high fasting serum glucose levels, high low-density lipoprotein-cholesterol levels, a history of smoking, and no habitual exercise, had the second largest effect on the AUC10 of the T-TAS. Conclusions Healthy volunteers who had any cardiovascular risk factors showed augmented thrombogenicity, even in artificial uniform capillaries, compared with those without any risk factors in the T-TAS.


Transfusion ◽  
2017 ◽  
Vol 57 (7) ◽  
pp. 1763-1771 ◽  
Author(s):  
Giacomo E. Iapichino ◽  
Martin Ponschab ◽  
Janne Cadamuro ◽  
Susanne Süssner ◽  
Christian Gabriel ◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
William P. Sheffield ◽  
Varsha Bhakta ◽  
Qi-Long Yi ◽  
Craig Jenkins

Regulations concerning the storage of transfusable plasma differ internationally. In Canada, plasma obtained from whole blood donations and frozen within 24 hours of phlebotomy (frozen plasma, FP) may be thawed and transfused within 120 hours of refrigerated storage. However, plasma frozen within 8 hours of phlebotomy following apheresis donation (FFPA) must be transfused within 24 hours of thawing and refrigeration. Our objectives were to measure coagulation factors (F) V, VII, and VIII, fibrinogen activities, and the prothrombin time (PT) in thawed refrigerated FFPA at 0, 24, and 120 hours of storage and to compare these values to those in thawed refrigerated FP. Fibrinogen activity remained unchanged over time, while mean factor levels in 28 FFPA units declined by 17% (FV), 19.7% (FVII), and 54.6% (FVIII) over 120 hours, while PT values rose to 7.6%. Factor activities were significantly higher in FFPA than FP after 120 hours of refrigerated storage. Residual FVIII activities in thawed FFPA met predefined noninferiority criteria compared to thawed FP after 120 hours. These results support a change in Canadian regulations to permit transfusion of thawed FFPA made in a closed system and refrigerated for up to 120 hours, one that could reduce wastage of transfusable plasma.


Sign in / Sign up

Export Citation Format

Share Document