Removal of 17α-ethinylestradiol, salicylic acid, trimethoprim, carbamazepine and nonylphenol through biological carbon and nitrogen removal processes

2017 ◽  
Vol 31 (3) ◽  
pp. 440-449 ◽  
Author(s):  
Victory Odize ◽  
Arifur Rahman ◽  
Kimberly Jones ◽  
Wendell Khunjar ◽  
Sudhir Murthy
1999 ◽  
Vol 39 (6) ◽  
pp. 191-198 ◽  
Author(s):  
Timothy J. Hurse ◽  
Michael A. Connor

In an attempt to gain a better understanding of ammonia and nitrogen removal processes in multi-pond wastewater treatment lagoons, an analysis was carried out of data obtained during regular monitoring of Lagoon 115E at the Western Treatment Plant in Melbourne. To do this, a contour plot approach was developed that enables the data to be displayed as a function of pond number and date. Superimposition of contour plots for different parameters enabled the dependence of ammonia and nitrogen removal rates on various lagoon characteristics to be readily assessed. The importance of nitrification as an ammonia removal mechanism was confirmed. Temperature, dissolved oxygen concentration and algal concentration all had a significant influence on whether or not sizeable nitrifier populations developed and persisted in lagoon waters. The analysis made it evident that a better understanding of microbial, chemical and physical processes in lagoons is needed before their nitrogen removal capabilities can be predicted with confidence.


2012 ◽  
Vol 550-553 ◽  
pp. 1455-1459
Author(s):  
Jing Tang ◽  
Hong Ming E ◽  
Jin Xiang Fu ◽  
Jin Nan Chen ◽  
Ming Fan

With nitrite or nitrate nitrogen as electron acceptor in the high salt conditons, halophilic denitrifying bacteria can transfer nitrite or nitrate to nitrogen, thereby purifying the high-salt wastewater. Halophilic denitrifying bacteria play an important role in the carbon and nitrogen removal of saline wastewater, such as petroleum, chemical industry, seafood processing and seafood farming. This article dissussed halophilic denitrifying bacteria screening, the main types and the corresponding morphological characteristics, then we focused on the research progress of main factors of halophilic denitrifying bacteria’s growth and nitrogen removal. Finally put forward the current problems of the research and development trend of halophilic denitrifying bacteria.


2015 ◽  
Vol 74 (3) ◽  
Author(s):  
S. M. Zain ◽  
N. L. Ching ◽  
S. Jusoh ◽  
S. Y. Yunus

The aim of this study is to identify the relationship between the rate of electricity generation and the rate of carbon and nitrogen removal from wastewater using different MFC processes.  Determining whether the generation of electricity using MFC process could be related to the rate of pollutant removal from wastewater is noteworthy. Three types of MFC process configurations include the batch mode (SS), a continuous flow of influent with ferricyanide (PF) as the oxidizing agent and a continuous flow of influent with oxygen (PU) as the oxidizing agent. The highest quantity of electricity generation was achieved using the continuous flow mode with ferricyanide (0.833 V), followed by the continuous flow mode with oxygen (0.589 V) and the batch mode (0.352 V). The highest efficiency of carbon removal is also achieved by the continuous flow mode with ferricyanide (87%), followed by the continuous flow mode with oxygen (51%) and the batch mode (46%). Moreover, the continuous flow mode with ferricyanide produced the highest efficiency for nitrogen removal (63%), followed by the continuous flow mode with oxygen (54%) and the batch mode (27%).


2020 ◽  
Vol 82 (9) ◽  
pp. 1795-1807 ◽  
Author(s):  
Dejun Bian ◽  
Zebing Nie ◽  
Fan Wang ◽  
Shengshu Ai ◽  
Suiyi Zhu ◽  
...  

Abstract A micro-pressure swirl reactor (MPSR) was developed for carbon and nitrogen removal of wastewater, in which dissolved oxygen (DO) gradient and internal circulation could be created by setting the aerators along one side of the reactor, and micro-pressure could be realized by sealing most of the top cap and increasing the outlet water level. In this study, velocity and DO distribution in the reactor was measured, removal performance treating high-concentration wastewater was investigated, and the main functional microorganisms were analyzed. The experiment results indicated that there was stable swirl flow and spatial DO gradient in MPSR. Operated in sequencing batch reactor mode, distinct biological environments spatially and temporally were created. Under the average influent condition of chemical oxygen demand (COD) concentration of 2,884 mg/L and total nitrogen (TN) of 184 mg/L, COD removal efficiency and removal loading was 98% and 1.8 kgCOD/(m3·d) respectively, and TN removal efficiency and removal loading reached up to 90% and 0.11 kgTN/(m3·d) respectively. With efficient utilization of DO and simpler configuration for simultaneous nitrification and denitrification, the MPSR has the potential of treating high-concentration wastewater at lower cost.


Sign in / Sign up

Export Citation Format

Share Document