Weed suppression versus water use: Efficacy of cover crops in water‐limited agroecosystems

Weed Research ◽  
2021 ◽  
Author(s):  
Prashasti Agarwal ◽  
Brian J. Schutte ◽  
Omololu John Idowu ◽  
Robert L. Steiner ◽  
Erik A. Lehnhoff
2011 ◽  
Vol 14 (1) ◽  
pp. 75-85 ◽  
Author(s):  
Hiroshi Uchino ◽  
Kazuto Iwama ◽  
Yutaka Jitsuyama ◽  
Keiko Ichiyama ◽  
Eri Sugiura ◽  
...  

Author(s):  
Katja Koehler-Cole ◽  
Christopher A. Proctor ◽  
Roger W. Elmore ◽  
David A. Wedin

Abstract Replacing tillage with cover crops (CC) for weed management in corn (Zea mays L.)-soybean [Glycine max (L.) Merr.] systems with mechanical weed control has many soil health benefits but in the western Corn Belt, CC establishment after harvest is hampered by cold temperatures, limited labor and few compatible CC species. Spring-planted CC may be an alternative, but information is lacking on suitable CC species. Our objective was to evaluate four spring-planted CC with respect to biomass production and weed suppression, concurrent with CC growth and post-termination. Cover crop species tested were oat (Avena sativa L.), barley (Hordeum vulgare L.), brown mustard [Brassica juncea (L.) Czern.] and yellow mustard (Brassica hirta Moench). They were compared to no-CC treatments that were either tilled pre- and post-planting of soybean (no-CC tilled) or not tilled at all (no-CC weedy). CC were planted in late March to early April, terminated 52–59 days later using an undercutter, and soybean was planted within a week. The experiment had a randomized complete block design with four replications and was repeated for 3 years. Mustards and small grains produced similar amounts of biomass (1.54 Mg ha−1) but mustard biomass production was more consistent (0.85–2.72 Mg ha−1) than that of the small grains (0.35–3.81 Mg ha−1). Relative to the no-CC weedy treatment, mustards suppressed concurrent weed biomass in two out of 3 years, by 31–97%, and small grains suppressed concurrent weed biomass in only 1 year, by 98%. Six weeks after soybean planting, small grains suppressed weed biomass in one out of 3 years, by 79% relative to the no-CC weedy treatment, but mustards did not provide significant weed suppression. The no-CC tilled treatment suppressed weeds each year relative to the no-CC weedy treatment, on average 87%. The ineffective weed control by CC reduced soybean biomass by about 50% six weeks after planting. While spring-planted CC have the potential for pre-plant weed control, they do not provide adequate early season weed suppression for soybean.


Weed Science ◽  
2006 ◽  
Vol 54 (02) ◽  
pp. 326-334 ◽  
Author(s):  
Kevin S. Charles ◽  
Mathieu Ngouajio ◽  
Darryl D. Warncke ◽  
Kenneth L. Poff ◽  
Mary K. Hausbeck

Field studies were carried out in Laingsburg, MI, from 2002 to 2004 on Houghton muck soil to assess the impacts of cover crops and soil fertility regimes on weed populations and celery yield. The cover crops were oilseed radish, cereal rye, hairy vetch, and a bare ground control. The fertility rates were full (180, 90, and 450 kg ha−1nitrogen [N], phosphorus pentoxide [P2O5], and potassium oxide [K2O], respectively), half (90, 45, and 225 kg ha−1N, P2O5, and K2O, respectively), and low (90 kg ha−1N). Each cover crop treatment was combined with the low or half rate of fertilizer. An additional treatment with bare ground plus the full rate of fertilizer was added as standard practice. Treatments were maintained in the same location for the duration of the study. Major weed species were common chickweed, prostrate pigweed, shepherd's-purse, common purslane, and yellow nutsedge. Each year, oilseed radish consistently produced the greatest biomass and provided over 98% early season weed biomass suppression. Hairy vetch and cereal rye provided about 70% weed suppression in early spring. Soil fertility level affected weed populations during the 2004 growing season. In 2004, weed biomass in treatments without cover crops or with vetch increased when greater amounts of fertilizer were applied. Within individual fertility levels, higher celery yields were recorded in the oilseed radish plots. For example, in the low fertility rate, celery yield was 34.8, 29.2, 23.9, and 24.4 ton ha−1in the oilseed radish, cereal rye, hairy vetch, and control plots, respectively in 2003. Overall, the results of this experiment indicate that when included in a system where hoeing and hand-weeding are the only weed control methods, cover crops can successfully improve weed management and celery yield on muck soils, allowing reduced fertilizer inputs.


HortScience ◽  
2018 ◽  
Vol 53 (4) ◽  
pp. 432-440 ◽  
Author(s):  
Eric B. Brennan ◽  
Richard F. Smith

Strawberry (Fragaria ×ananassa Duch.) production in California uses plastic mulch–covered beds that provide many benefits such as moisture conservation and weed control. Unfortunately, the mulch can also cause environmental problems by increasing runoff and soil erosion and reducing groundwater recharge. Planting cover crops in bare furrows between the plastic cover beds can help minimize these problems. Furrow cover cropping was evaluated during two growing seasons in organic strawberries in Salinas, CA, using a mustard (Sinapis alba L.) cover crop planted at two seeding rates (1× and 3×). Mustard was planted in November or December after strawberry transplanting and it resulted in average densities per meter of furrow of 54 and 162 mustard plants for the 1× and 3× rates, respectively. The mustard was mowed in February before it shaded the strawberry plants. Increasing the seeding rate increased mustard shoot biomass and height, and reduced the concentration of P in the mustard shoots. Compared with furrows with no cover crop, cover-cropped furrows reduced weed biomass by 29% and 40% in the 1× and 3× seeding rates, respectively, although weeds still accounted for at least 28% of the furrow biomass in the cover-cropped furrows. These results show that growing mustard cover crops in furrows without irrigating the furrows worked well even during years with relatively minimal precipitation. We conclude that 1) mustard densities of ≈150 plants/m furrow will likely provide the most benefits due to greater biomass production, N scavenging, and weed suppression; 2) mowing was an effective way to kill the mustard; and 3) high seeding rates of mustard alone are insufficient to provide adequate weed suppression in strawberry furrows.


2018 ◽  
Vol 35 (3) ◽  
pp. 227-233 ◽  
Author(s):  
Natalie P Lounsbury ◽  
Nicholas D Warren ◽  
Seamus D Wolfe ◽  
Richard G Smith

AbstractHigh-residue cover crops can facilitate organic no-till vegetable production when cover crop biomass production is sufficient to suppress weeds (>8000 kg ha−1), and cash crop growth is not limited by soil temperature, nutrient availability, or cover crop regrowth. In cool climates, however, both cover crop biomass production and soil temperature can be limiting for organic no-till. In addition, successful termination of cover crops can be a challenge, particularly when cover crops are grown as mixtures. We tested whether reusable plastic tarps, an increasingly popular tool for small-scale vegetable farmers, could be used to augment organic no-till cover crop termination and weed suppression. We no-till transplanted cabbage into a winter rye (Secale cereale L.)-hairy vetch (Vicia villosa Roth) cover crop mulch that was terminated with either a roller-crimper alone or a roller-crimper plus black or clear tarps. Tarps were applied for durations of 2, 4 and 5 weeks. Across tarp durations, black tarps increased the mean cabbage head weight by 58% compared with the no tarp treatment. This was likely due to a combination of improved weed suppression and nutrient availability. Although soil nutrients and biological activity were not directly measured, remaining cover crop mulch in the black tarp treatments was reduced by more than 1100 kg ha−1 when tarps were removed compared with clear and no tarp treatments. We interpret this as an indirect measurement of biological activity perhaps accelerated by lower daily soil temperature fluctuations and more constant volumetric water content under black tarps. The edges of both tarp types were held down, rather than buried, but moisture losses from the clear tarps were greater and this may have affected the efficacy of clear tarps. Plastic tarps effectively killed the vetch cover crop, whereas it readily regrew in the crimped but uncovered plots. However, emergence of large and smooth crabgrass (Digitaria spp.) appeared to be enhanced in the clear tarp treatment. Although this experiment was limited to a single site-year in New Hampshire, it shows that use of black tarps can overcome some of the obstacles to implementing cover crop-based no-till vegetable productions in northern climates.


Weed Science ◽  
2021 ◽  
pp. 1-26
Author(s):  
Roberto Botelho Ferraz Branco ◽  
Fernando de Carvalho ◽  
João Paulo de Oliveira ◽  
Pedro Luis da Costa Alves

Abstract Cover crop residue left on the soil surface as organic mulch in no-tillage crop production provides several environmental benefits, including weed suppression. Thus, many farmers who use cover crops attempt to reduce the use of agricultural inputs, especially herbicides. Therefore, our objectives were to study the potential of different cover crop species to suppress weeds and produce an in situ organic mulch, and evaluate the effect of the organic mulch with and without spraying glyphosate on weed suppression for vegetable (tomato (Solanum lycopersicum L. and broccoli (Brassica oleracea L. var. botrytis) growth and yield. Five cover crop treatments (sunn hemp (Crotalaria juncea L.), jack bean [Canavalia ensiformis (L.) DC.], pearl millet [Pennisetum glaucum (L.) R. Br.], grain sorghum [Sorghum bicolor (L.) Moench ssp. bicolor] and a no-cover crop (control)) were used in the main plots; and spraying or no spraying glyphosate on the flattened cover crop in the sub plots of split-plot experimental design. Organic mulch from pearl millet, sorghum and sunn hemp resulted in lower weed biomass during the early season of both tomato and broccoli than jack bean and no-cover crop (control). Spraying glyphosate after roller crimping reduced weed biomass by 103 g m−2 and 20 g m−2 by 45 and 60 days after transplanting (DAT) of tomato, respectively and resulted in a better tomato yield compared to non spraying. Glyphosate reduced weed biomass by 110 g m−2 in the early season of broccoli (30 DAT), but did not affect yield. Terminating high biomass cover crops with a roller crimper is a promising technique for weed management in vegetable crops, which has the potential to reduce or even eliminate the need for herbicide.


2018 ◽  
Vol 34 (5) ◽  
pp. 439-446 ◽  
Author(s):  
David Robb ◽  
Geoff Zehnder ◽  
Robin Kloot ◽  
William Bridges ◽  
Dara Park

AbstractOrganic vegetable growers rely heavily on mechanical methods such as tillage and other forms of labor-intensive soil cultivation for weed management despite the negative effects to soil health associated with intensive soil disturbance. The use of cover crops and no-till (NT) vegetable production represents an alternative approach to weed control that can enhance rather than degrade soil health; however, there are challenges inherent with this practice and previous results in vegetable production have been mixed. Field experiments were conducted over 2 yr at the Clemson Student Organic Farm to examine the effects of tillage [NT versus conventional tillage (CT)] on weed development and management in organic tomato and summer squash production under different nitrogen (N) fertility regimes, and to assess soil N dynamics in both systems. Squash yields were similar between tillage treatments in both years. NT tomato yields were 43% greater than CT yields in 2014, whereas CT tomato yields were 46% greater than NT yields in 2015. Squash and tomato yields per unit of management labor (time) were significantly greater in NT compared with CT treatments for both years. There were no statistical differences in squash and tomato yields between N fertilization treatments in either year. Pre- and post-season soil N results were mixed. Pre-season soil N levels were significantly higher in NT tomato plots in 2014 but similar between tillage treatments in tomato plots in 2015 and in squash plots both years. Post-season soil N levels in tomato plots were similar between tillage treatments both years. Post-season soil N levels were significantly higher in NT squash plots in 2014 and in CT squash plots in 2015. Roller-crimped NT mulches provided adequate early-season weed suppression in both years and saved considerable weed management and seedbed preparation labor. Overall, the results demonstrated that organic NT is a viable method for reduced tillage summer vegetable production in the southeastern Piedmont region.


Agronomy ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 319 ◽  
Author(s):  
Laura Vincent-Caboud ◽  
Léa Vereecke ◽  
Erin Silva ◽  
Joséphine Peigné

Organic farming relies heavily on tillage for weed management, however, intensive soil disturbance can have detrimental impacts on soil quality. Cover crop-based rotational tillage (CCBRT), a practice that reduces the need for tillage and cultivation through the creation of cover crop mulches, has emerged as an alternative weed management practice in organic cropping systems. In this study, CCBRT systems using cereal rye and triticale grain species are evaluated with organic soybean directly seeded into a rolled cover crop. Cover crop biomass, weed biomass, and soybean yields were evaluated to assess the effects of cereal rye and winter triticale cover crops on weed suppression and yields. From 2016 to 2018, trials were conducted at six locations in Wisconsin, USA, and Southern France. While cover crop biomass did not differ among the cereal grain species tested, the use of cereal rye as the cover crop resulted in higher soybean yields (2.7 t ha−1 vs. 2.2 t ha−1) and greater weed suppression, both at soybean emergence (231 vs. 577 kg ha−1 of weed biomass) and just prior to soybean harvest (1178 vs. 1545 kg ha−1). On four out of six sites, cover crop biomass was lower than the reported optimal (<8000 kg ha−1) needed to suppress weeds throughout soybean season. Environmental conditions, in tandem with agronomic decisions (e.g., seeding dates, cultivar, planters, etc.), influenced the ability of the cover crop to suppress weeds regardless of the species used. In a changing climate, future research should focus on establishing flexible decision support tools based on multi-tactic cover crop management to ensure more consistent results with respect to cover crop growth, weed suppression, and crop yields.


Crop Science ◽  
2019 ◽  
Vol 59 (3) ◽  
pp. 1248-1261 ◽  
Author(s):  
Heather D. Toler ◽  
Robert M. Augé ◽  
Victoria Benelli ◽  
Fred L. Allen ◽  
Amanda J. Ashworth

Sign in / Sign up

Export Citation Format

Share Document