Performance Investigation of Pilot Study for Wastewater Reclamation Using Ferric Chloride as Coagulant

2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Chin Boon Ong ◽  
Abdul Wahab Mohammad ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Hassimi Abu Hasan

A pilot study was conducted to evaluate the efficiency of ferric chloride as coagulant agent on the long term performance to reverse osmosis membrane technology. The pilot unit comprised of 50m3/day pore controllable fiber (PCF) technology as a pre-treatment prior to RO for water reclamation from an effluent treatment plant based in Malaysia. The additions of ferric chloride ahead of PCF unit give high rejection of permeate quality after RO such as TSS, COD, alkalinity, and nitrite. However, there is deterioration of RO membrane performance after the pilot unit has been run continuously for 24 hours over 3 months. Average percentage reduction for parameters such as BOD5, COD, TDS, conductivity, and TSS for PCF-RO over 3 months operation is 51.12%, 70.01%, 68.36%, 68.39% and 69.17% respectively. Fouled RO membranes for both lines were analyzed using Fourier transform infrared (FTIR) spectroscopy and EDS coupled with scanning electron microscopy (SEM). EDS-SEM results showed that the foulants deposit on RO membrane for PCF-RO about 4.29-6.23µm and Fe element at 14.81% by the mean of weight. These imply that ferric chloride residual contribute to RO membrane fouling and thus affect the system stability and efficiency.

2013 ◽  
Vol 838-841 ◽  
pp. 2712-2716
Author(s):  
Yong Tu ◽  
Yong Gang Bai ◽  
Yong Chen ◽  
Wei Jing Liu ◽  
Jun Xu ◽  
...  

The research on ultrafiltration membrane assisted by powdered zeolite for the treatment of secondary effluent from a municipal wastewater treatment plant was studied. The results show that membrane fouling rate is reduced by pre-coating the ultrafiltration membrane with powdered zeolite, and the treatment performance of secondary effluent is enhanced. UV-vis, three-dimensional excitation emission matrix (3D-EEM) fluorescence spectra and scanning electron microscopy (SEM) images for ultrafiltration were also discussed.


Author(s):  
Tong Yu ◽  
Chenlu Xu ◽  
Feng Chen ◽  
Haoshuai Yin ◽  
Hao Sun ◽  
...  

Abstract Microcoagulation has recently been considered as a promising pretreatment for an ultrafiltration (UF) process from numerous studies. To investigate the effects of microcoagulation on the performance of the UF–reverse osmosis (RO) system treating wastewater with high and fluctuant salinity, different dosages of coagulant (poly-aluminum chloride) were added prior to the UF unit in a pilot-scale UF–RO system for a 10-week period operation. Microcoagulation obviously improved the contaminant removal and cleaning efficiencies, including water backwash, chemical enhanced backwash and cleaning in place processes. Organic fouling was dominated during the initial stage of the RO membrane fouling. The microbial communities of water samples and foulant on the RO membrane were similar to those of seawater and foulant on the RO membranes from seawater RO plants. The microbial community of the foulant on the membrane was similar to that of UF permeate and RO concentrate. These results demonstrated that microcoagulation could improve the performance of the UF–RO system treating the effluent with high and fluctuant salinity from a coastal municipal wastewater treatment plant.


2012 ◽  
Vol 66 (1) ◽  
pp. 61-71 ◽  
Author(s):  
Veronica Gomez ◽  
Katariina Majamaa ◽  
Eva Pocurull ◽  
Francesc Borrull

The growing demand on water resources has increased the interest in wastewater reclamation for multiple end-use applications such as indirect and direct potable reuse. In these applications, the removal of organic micropollutants is of a greater concern than in conventional wastewater treatment. This article presents a collection of data of trace organic micropollutants in an urban wastewater treatment plant (WWTP) in North East Spain using reverse osmosis (RO) membrane treatment. The RO rejection values of the organic molecules studied with a wide range of solute size and hydrophobicity were determined. Several chromatographic methods monitoring different endocrine disrupting chemicals (EDCs), pharmaceuticals and personal care products (PPCPs) were used. Results indicated that secondary effluents from this Spanish WWTP contained most of the studied organic compounds indicating incomplete removal of organics in the conventional treatment of the plant. However, the rejection of most micropollutants was high for all three RO membrane types (low energy, high rejection, fouling resistant) tested. It was observed that some selected micropollutants were less efficiently removed (e.g. the small and polar and the more hydrophobic) and the molecular weight and membrane material influenced removal efficiencies.


Author(s):  
Jianwei Liu ◽  
Mengfei Zhao ◽  
Cui Duan ◽  
Peng Yue ◽  
Tinggang Li

Abstract The widespread implementation of municipal wastewater treatment and reuse must first ensure the safety of reused wastewater. The effluent of the municipal wastewater treatment plant contains a large amount of dissolved organic matter (DOM), which adversely affects the reuse of wastewater. In this study, the ultrafiltration (UF) + reverse osmosis (RO) process was used to treat the effluent from wastewater treatment plants. The relationship between the removal performance, membrane fouling of the UF + RO process, and DOM characteristics of influent were studied. The results show that DOM can be removed effectively by UF + RO process. The UF mainly removes DOM with a molecular weight greater than 10 kDa, while RO has a significant removal effect on low-molecular DOM, which mainly cause UF and RO membrane fouling. The UF + RO process has a significant removal rate on fulvic acid, humic acid, tyrosine, and tryptophan, and the order is humic acid > fulvic acid > tyrosine > tryptophan. Fulvic acid contributed the most to the UF membrane fouling, while fulvic acid and protein-like proteins contributed mainly to the RO membrane fouling.


2014 ◽  
Vol 54 (4-5) ◽  
pp. 900-907 ◽  
Author(s):  
Chin Boon Ong ◽  
Abdul Wahab Mohammad ◽  
Siti Rozaimah Sheikh Abdullah ◽  
Hassimi Abu Hasan ◽  
Chai Hoon Koo

Chemosphere ◽  
2021 ◽  
pp. 133471
Author(s):  
Gen-Qiang Chen ◽  
Yin-Hu Wu ◽  
Yu-Jun Tan ◽  
Zhuo Chen ◽  
Xing Tong ◽  
...  

2019 ◽  
Vol 18 (9) ◽  
pp. 2023-2034 ◽  
Author(s):  
Agnieszka A. Pilarska ◽  
Krzysztof Pilarski ◽  
Boguslawa Waliszewska ◽  
Magdalena Zborowska ◽  
Kamil Witaszek ◽  
...  

1988 ◽  
Vol 20 (1) ◽  
pp. 65-72 ◽  
Author(s):  
Rurik Skogman ◽  
Reino Lammi

The requirements imposed on the Finnish forest products industry by the water authorities have focused on the reduction of BOD and suspended solids in the wastewaters. The industry has tried to comply with these requirements, first through internal measures such as process changes and closed systems. When these have not been sufficient, external treatment has been resorted to. The Wilh. Schauman Company in Jakobstad has chosen activated sludge with extended aeration from among the available methods for treating effluent. The plant has operated since the beginning of 1986 with extremely good results. In addition to the reduction of BOD and suspended solids, there has been a marked decrease of chlorinated phenols. Chlorinated substances with higher molecular weight are also removed during the process.


Sign in / Sign up

Export Citation Format

Share Document