PERFORMANCE ANALYSIS OF FEATURE SELECTION METHOD USING ANOVA FOR AUTOMATIC WHEEZE DETECTION

2015 ◽  
Vol 77 (7) ◽  
Author(s):  
Syamimi Mardiah Shaharum ◽  
Kenneth Sundaraj ◽  
Khaled Helmy

In this work, we show that the classification performance of a high-dimensional features data can be improved by applying feature selection method. One-way ANOVA were utilized and to evaluate the performance measure of the feature selection method, Artificial Neural Network (ANN) was used. From the results obtained, it can be concluded that ANN performance using feature that undergo feature selection method produce a better classification accuracy compared to the ANN performance using feature that did not undergo feature selection method with 93.33% against 80.00% accuracy achieved. Therefore can be conclude that feature selection is a process that is crucial to be done in order to produce a good performance rate. 

Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 271 ◽  
Author(s):  
Md Akizur Rahman ◽  
Ravie Chandren Muniyandi

An artificial neural network (ANN) is a tool that can be utilized to recognize cancer effectively. Nowadays, the risk of cancer is increasing dramatically all over the world. Detecting cancer is very difficult due to a lack of data. Proper data are essential for detecting cancer accurately. Cancer classification has been carried out by many researchers, but there is still a need to improve classification accuracy. For this purpose, in this research, a two-step feature selection (FS) technique with a 15-neuron neural network (NN), which classifies cancer with high accuracy, is proposed. The FS method is utilized to reduce feature attributes, and the 15-neuron network is utilized to classify the cancer. This research utilized the benchmark Wisconsin Diagnostic Breast Cancer (WDBC) dataset to compare the proposed method with other existing techniques, showing a significant improvement of up to 99.4% in classification accuracy. The results produced in this research are more promising and significant than those in existing papers.


Author(s):  
B. Venkatesh ◽  
J. Anuradha

In Microarray Data, it is complicated to achieve more classification accuracy due to the presence of high dimensions, irrelevant and noisy data. And also It had more gene expression data and fewer samples. To increase the classification accuracy and the processing speed of the model, an optimal number of features need to extract, this can be achieved by applying the feature selection method. In this paper, we propose a hybrid ensemble feature selection method. The proposed method has two phases, filter and wrapper phase in filter phase ensemble technique is used for aggregating the feature ranks of the Relief, minimum redundancy Maximum Relevance (mRMR), and Feature Correlation (FC) filter feature selection methods. This paper uses the Fuzzy Gaussian membership function ordering for aggregating the ranks. In wrapper phase, Improved Binary Particle Swarm Optimization (IBPSO) is used for selecting the optimal features, and the RBF Kernel-based Support Vector Machine (SVM) classifier is used as an evaluator. The performance of the proposed model are compared with state of art feature selection methods using five benchmark datasets. For evaluation various performance metrics such as Accuracy, Recall, Precision, and F1-Score are used. Furthermore, the experimental results show that the performance of the proposed method outperforms the other feature selection methods.


Mathematics ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1226
Author(s):  
Saeed Najafi-Zangeneh ◽  
Naser Shams-Gharneh ◽  
Ali Arjomandi-Nezhad ◽  
Sarfaraz Hashemkhani Zolfani

Companies always seek ways to make their professional employees stay with them to reduce extra recruiting and training costs. Predicting whether a particular employee may leave or not will help the company to make preventive decisions. Unlike physical systems, human resource problems cannot be described by a scientific-analytical formula. Therefore, machine learning approaches are the best tools for this aim. This paper presents a three-stage (pre-processing, processing, post-processing) framework for attrition prediction. An IBM HR dataset is chosen as the case study. Since there are several features in the dataset, the “max-out” feature selection method is proposed for dimension reduction in the pre-processing stage. This method is implemented for the IBM HR dataset. The coefficient of each feature in the logistic regression model shows the importance of the feature in attrition prediction. The results show improvement in the F1-score performance measure due to the “max-out” feature selection method. Finally, the validity of parameters is checked by training the model for multiple bootstrap datasets. Then, the average and standard deviation of parameters are analyzed to check the confidence value of the model’s parameters and their stability. The small standard deviation of parameters indicates that the model is stable and is more likely to generalize well.


Author(s):  
Gang Liu ◽  
Chunlei Yang ◽  
Sen Liu ◽  
Chunbao Xiao ◽  
Bin Song

A feature selection method based on mutual information and support vector machine (SVM) is proposed in order to eliminate redundant feature and improve classification accuracy. First, local correlation between features and overall correlation is calculated by mutual information. The correlation reflects the information inclusion relationship between features, so the features are evaluated and redundant features are eliminated with analyzing the correlation. Subsequently, the concept of mean impact value (MIV) is defined and the influence degree of input variables on output variables for SVM network based on MIV is calculated. The importance weights of the features described with MIV are sorted by descending order. Finally, the SVM classifier is used to implement feature selection according to the classification accuracy of feature combination which takes MIV order of feature as a reference. The simulation experiments are carried out with three standard data sets of UCI, and the results show that this method can not only effectively reduce the feature dimension and high classification accuracy, but also ensure good robustness.


Sentiment analysis plays a major role in e-commerce and social media these days. Due to the increasing growth of social media, a huge number of peoples and users send their reviews through the Internet and several other sources. Analyzing this data is challenging in today's life. In this paper new normalization based feature selection method is proposed and the topic of interest here is to select the relevant features and perform the classification of the data and find the accuracy. Stability of the data is considered as the most important challenge in analyzing the sentiments. In this paper investigating the sentiments and selecting the relevant features from the data set places a major role. The aim is to work with the vector-based feature selection and check the classification performance using recurrent networks. In this paper, text mining depends on feature retrieval methods to improve accuracy and propose a single matrix normalization method to reduce the dimensions. The proposed method performs data preprocessing or sentiment classification and features reduction to improve accuracy. The proposed method achieves better accuracy than the N-gram feature selection method. The experimental results show that the proposed method has better accuracy than other traditional feature selection approaches and that the proposed method can decrease the implementation time.


Sign in / Sign up

Export Citation Format

Share Document