DESIGN OF ENVIRONMENTAL FRIENDLY BUILDING BASED ON THE LOCAL WISDOM PHILOSOPHY OF SUMATERA TRADITIONAL HOUSE

2015 ◽  
Vol 77 (23) ◽  
Author(s):  
Gatot Eko Susilo ◽  
Ankavisi Nalaralagi

local wisdom philosophy of the Sumatera traditional house. The house is a combination between modern and traditional house of Sumatera which is a stilt house. The basement of the house is designed as rainwater storage in order to guarantee the availability of household water supply. On the other hand, the upper part of the house is designed as a dwelling. Simulation is undertaken in order to investigate the water volume behavior in the storage due to the variation of rainfall and water uses in the house. The simulation is applied in a house with a roof area of 54 m2, 4 residents, and 24 m3 of storage capacity. Daily rainfall data are obtained from the rainfall station in Bandar Lampung, Indonesia. The result of the simulation indicates that rainwater facility in the house is relatively effective to store rain water and to provide household water supply. For wet year periods, the system is able to supply about 80% to 90% of the total needs. Oppositely, in the dry seasons, the system can support the household water demand up to 60% of total needs.  

2020 ◽  
pp. 102-109
Author(s):  
D.KH. DOMULLODZHANOV ◽  
◽  
R. RAHMATILLOEV

The article presents the results of the field studies and observations that carried out on the territory of the hilly, low-mountain and foothill agro landscapes of the Kyzylsu-yuzhnaya (Kyzylsu-Southern) River Basin of Tajikistan. Taking into account the high-altitude location of households and the amount of precipitation in the river basin, the annual volumes of water accumulated with the use of low-cost systems of collection and storage of precipitation have been clarified. The amount of water accumulated in the precipitation collection and storage systems has been established, the volume of water used for communal and domestic needs,the watering of livestock and the amount of water that can be used to irrigate crops in the have been determined. Possible areas of irrigation of household plots depending on the different availability of precipitation have been determined. It has been established that in wet years (with precipitation of about 10%) the amount of water collected using drip irrigation will be sufficient for irrigation of 0.13 hectares, and in dry years (with 90% of precipitation) it will be possible to irrigate only 0.03 ha of the household plot. On the basis of the basin, the total area of irrigation in wet years can be 4497 ha, and in dry years only 1087 ha. Taking into account the forecasts of population growth by 2030 and an increase in the number of households, the total area of irrigation of farmlands in wet years may reach 5703 hectares,and in dry years – 1379 hectares. Growing crops on household plots under irrigation contributes to a significant increase in land productivity and increases the efficiency of water use of the Kyzylsu-yuzhnaya basin.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2606
Author(s):  
Preeti Preeti ◽  
Ataur Rahman

This paper presents reliability, water demand and economic analysis of rainwater harvesting (RWH) systems for eight Australian capital cities (Adelaide, Brisbane, Canberra, Darwin, Hobart, Melbourne, Perth and Sydney). A Python-based tool is developed based on a daily water balance modelling approach, which uses input data such as daily rainfall, roof area, overflow losses, daily water demand and first flush. Ten different tank volumes are considered (1, 3, 5, 10, 15, 20, 30, 50, 75 and 100 m3). It is found that for a large roof area and tank size, the reliability of RWH systems for toilet and laundry use is high, in the range of 80–100%. However, the reliability for irrigation use is highly variable across all the locations. For combined use, Adelaide shows the smallest reliability (38–49%), while Hobart demonstrates the highest reliability (61–77%). Furthermore, economic analysis demonstrates that in a few cases, benefit–cost ratio values greater than one can be achieved for the RWH systems. The findings of this study will help the Australian Federal Government to enhance RWH policy, programs and subsidy levels considering climate-sensitive inputs in the respective cities.


2018 ◽  
Vol 15 (30) ◽  
pp. 497-503
Author(s):  
A. B. dos SANTOS ◽  
É. C. DIAS ◽  
G. P. C. da SILVA ◽  
R. P. RIBEIRO ◽  
A. M. SILVA

Due to the events of the last years, when, mainly the Southeast region of Brazil has experienced one of the worst periods of water shortage, there has been a process of national awareness for the need of care with the quality and quantity of water. Therefore, currently in the national and world scenario is seeking to minimize the waste of water, acting mainly in the water supply systems, which have the highest loss rates of this liquid. In this way, the objective is to determine the volume of water (1000m³/year) wasted in SAA (Water Supply System), based on the amount of water produced and consumed in the North and Central-West region of Brazil and, from this, compare the losses in those regions, for the year 2015. Based on the analysis of the datas, it was verified that the water supply in the North and Central-West regions presented high losses rates, 43% and 37%, respectively. Actions such as maintenance of sanitary fittings and elimination of leaks in the residence, more efficient operation and maintenance of the system and improvement in the commercial management of service providers, are measures to combat and reduce water losses.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Nathan Man-Wai Wu ◽  
Maggie Ng ◽  
Vivian Wing-Wah Yam

AbstractPhotochromic materials have drawn growing attention because using light as a stimulus has been regarded as a convenient and environmental-friendly way to control properties of smart materials. While photoresponsive systems that are capable of showing multiple-state photochromism are attractive, the development of materials with such capabilities has remained a challenging task. Here we show that a benzo[b]phosphole thieno[3,2‑b]phosphole-containing alkynylgold(I) complex features multiple photoinduced color changes, in which the gold(I) metal center plays an important role in separating two photoactive units that leads to the suppression of intramolecular quenching processes of the excited states. More importantly, the exclusive photochemical reactivity of the thieno[3,2‑b]phosphole moiety of the gold(I) complex can be initiated upon photoirradiation of visible light. Stepwise photochromism of the gold(I) complex has been made possible, offering an effective strategy for the construction of multiple-state photochromic materials with multiple photocontrolled states to enhance the storage capacity of potential optical memory devices.


2015 ◽  
Vol 20 (24) ◽  
Author(s):  
B Guzman-Herrador ◽  
A Carlander ◽  
S Ethelberg ◽  
B Freiesleben de Blasio ◽  
M Kuusi ◽  
...  

A total of 175 waterborne outbreaks affecting 85,995 individuals were notified to the national outbreak surveillance systems in Denmark, Finland and Norway from 1998 to 2012, and in Sweden from 1998 to 2011. Between 4 and 18 outbreaks were reported each year during this period. Outbreaks occurred throughout the countries in all seasons, but were most common (n = 75/169, 44%) between June and August. Viruses belonging to the Caliciviridae family and Campylobacter were the pathogens most frequently involved, comprising n = 51 (41%) and n = 36 (29%) of all 123 outbreaks with known aetiology respectively. Although only a few outbreaks were caused by parasites (Giardia and/or Cryptosporidium), they accounted for the largest outbreaks reported during the study period, affecting up to 53,000 persons. Most outbreaks, 124 (76%) of those with a known water source (n = 163) were linked to groundwater. A large proportion of the outbreaks (n = 130/170, 76%) affected a small number of people (less than 100 per outbreak) and were linked to single-household water supplies. However, in 11 (6%) of the outbreaks, more than 1,000 people became ill. Although outbreaks of this size are rare, they highlight the need for increased awareness, particularly of parasites, correct water treatment regimens, and vigilant management and maintenance of the water supply and distribution systems.


2021 ◽  
Vol 16 (1) ◽  
pp. 18-25
Author(s):  
Fauziah Ismahyanti ◽  
Rosmawita Saleh ◽  
Arris Maulana

This research is done to plan rainwater harvesting so that it can be used as an alternative water source on the campus B UNJ so it is expected to reduce groundwater use that can cause a puddle. The method used in the PAH development plan is a water balance method. This method compares the level of demand with water volume that can be accommodated or the availability of water (supply). Based on the results of the analysis, it was found that the potential for rainwater in the FIO office building A was 1773.95 m3 , FMIPA building B was 1904.62 m3 , the FIO lecture building C was 1613.21 m3 and the Ulul Albab mosque was 512.16 m3 . Potential rainwater obtained cistern PAH capacity of 200 m3 by saving water needs by 30% in building A FIO, building B FMIPA, and building C FIO. The capacity of the PAH cistern is 80 m3 by saving the water needs of the Ulul Albab mosque by 13.3%. Placement of the PAH cistern under the ground with a ground water system. Ecodrainage application by utilizing the PAH system can reduce drainage load by 0.158 m3 /second or 13.9% from rainwater runoff.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2580
Author(s):  
Yang Zhou ◽  
Eric Lee ◽  
Ling-Tim Wong ◽  
Kwok-Wai Mui

Skyscrapers are common nowadays around the world, especially in cities with limited development area. In order to pump water up to the higher level of a skyscraper, a cascade water supply system has to be installed. Currently, cascade water supply systems are mainly designed based on practical experiences or requirements of existing standards/guidelines that, in fact, are not specifically for skyscrapers. However, thorough studies on cascade water supply system designs are still limited in the literature. This study proposes mathematical models and uses Monte Carlo simulations to evaluate the design flow rate of a typical cascade water supply system that feeds various appliances in a residential skyscraper in Hong Kong. Graphs that showed the correlations between the inflow rate in the supply pipe and water volume in the tank are obtained. While tank storage volume is confirmed, the design flow rate of the cascade water supply system can be determined from these graphs. The proposed mathematical models can also be applied to evaluate the design flow rate of cascade water supply systems in other types of skyscrapers (e.g., office, commercial building) as well as with the changes in water demand patterns in the models.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Vladimir Fonseca Nascimento ◽  
Alfredo Ribeiro Neto

ABSTRACT This paper reports the application of information acquired by aerial survey to characterize water supply reservoirs in the Pajeú River Basin (Pernambuco State/Brazil). The survey was carried out with digital cameras of high spatial resolution and laser relief profiling (LiDAR technology). Two areas were selected to apply the remote sensing products. Small reservoirs in the Quixaba Creek Basin were identified based on their topographic characteristics. Given that the small reservoirs are “depressions” in the terrain, they can be “filled”, resulting in a new Digital Terrain Model (DTM). The difference between the filled DTM and the original DTM makes it possible to identify the reservoirs. A summary of the results is: 61 reservoirs were correctly detected; 18 reservoirs were not detected; 13 reservoirs were detected erroneously. In another application, the storage capacity of the reservoirs belonging to the hydrosystems of Pajeú River Basin was estimated. The storage in these reservoirs and maximum surface area were estimated using DTM and geoprocessing tools. From the total of 31 reservoirs evaluated, eight were completely empty at the time of the LiDAR data collection. The official registers reported 83.83 million m3 for the storage capacity of these eight reservoirs, whereas our applications estimated the value at 70.23 million m3. This difference is explained by the loss of volume in the reservoirs due to the process of sediment transport.


Sign in / Sign up

Export Citation Format

Share Document