scholarly journals Aligned magnetic field on dusty Casson fluid over a stretching sheet with Newtonian heating

Author(s):  
Nur Syamilah Arifin ◽  
Syazwani Mohd Zokri ◽  
Abdul Rahman Mohd Kasim ◽  
Mohd Zuki Salleh ◽  
Nurul Farahain Mohammad ◽  
...  

Boundary layer flow and heat transfer on Casson fluid with dust particle over a stretching sheet is numerically investigated. The influences of aligned magnetic field together with Newtonian heating are considered in this problem. The governing equations are first transformed into ordinary differential equations using the appropriate similarity transformation variables. The numerical computation using Runge-Kutta Fehlberg (RKF45) method is employed to generate the results. Several physical parameters for both phases (fluid and particle) such as aligned angle, magnetic field parameter, Casson parameter, fluid particle interaction parameter, Prandtl number and conjugate parameter are investigated and analysed. The results in term of distribution velocity and temperature are presented graphically. The finding revealed that a rise in aligned angle and magnetic field parameter led to decrease the velocity profile and increase the temperature profile for both phases.

2020 ◽  
Vol 399 ◽  
pp. 65-75 ◽  
Author(s):  
Abdul Rahman Mohd Kasim ◽  
Nur Syamilah Arifin ◽  
Syazwani Mohd Zokri ◽  
Mohd Zuki Salleh

The investigation on the interaction between solid and fluid under combined convective flow has been carried out mathematically. The Jeffrey fluid model is taken as the fluid phase and the model is being embedded with the dust particles (solid phase). This two-phase model is constructed by introducing the fluid-particles interaction forces in the momentum equations of the fluid and dust phases, respectively. The natural and forced convections together with the aligned magnetic field are considered on the fluid flow. Also, the Newtonian heating as thermal boundary condition is induced on the vertical stretching sheet. In order to reduce the complexity of the model, the governing equations are transformed from partial differential equation into ordinary differential equation via suitable similarity transformation. The solutions are obtained in terms of velocity and temperature profiles for the fluid and particles phases respectively whereby the Keller-box method is utilized to obtain the desired outcomes. The influences of several significant physical parameters are visualized graphically to clarify the flow and heat transfer characteristic for both phases. The investigation found that the fluid’s velocity is affected by the presence of the dust particles which led to decelerate the fluid transference. The present flow model is able to be compared with the single-phase fluid cases if the fluid-particle interaction parameter is ignored.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Zulqurnain Sabir ◽  
Rizwan Akhtar ◽  
Zhu Zhiyu ◽  
Muhammad Umar ◽  
Ali Imran ◽  
...  

In this study, an attempt is made to explore the two-phase Casson nanofluid passing through a stretching sheet along a permeable surface with the effects of chemical reactions and gyrotactic microorganisms. By utilizing the strength of similarity transforms the governing PDEs are transformed into set of ODEs. The resulting equations are handled by using a proficient numerical scheme known as the shooting technique. Authenticity of numerical outcomes is established by comparing the achieved results with the MATLAB built-in solver bvp4c. The numerical outcomes for the reduced Nusselt number and Sherwood number are exhibited in the tabular form, while the variations of some crucial physical parameters on the velocity, temperature, and concentration profiles are demonstrated graphically. It is observed that Local Nusselt number rises with the enhancement in the magnetic field parameter, the porous media parameter, and the chemical reactions, while magnetic field parameter along with porous media parameter retards the velocity profile.


Author(s):  
Noorzehan Fazahiyah Md Shab ◽  
Anati Ali

This paper investigated the problem of hydromagnetic boundary layer flow and heat transfer of a dusty fluid over a stretching sheet through a porous medium. The velocity slip was considered instead of the no-slip condition at the boundary. The governing partial equations were reduced into a set of non-linear ordinary differential equations by using the suitable similarity transformation. The transformed equations were numerically integrated using bvp4c in Matlab. The effects of various physical parameters on the velocity and temperature profiles of both phases, such as fluid-particle interaction parameter, magnetic parameter, mass concentration parameter, porosity parameter and Prandtl number were obtained and analyzed through several plots. Useful discussions were carried out with the help of plotted graphs and tables. Under the limiting cases, the obtained numerical results were compared and found to be in good agreement with previously published results.


2013 ◽  
Vol 18 (2) ◽  
pp. 599-608
Author(s):  
R. Muthucumaraswamy ◽  
V. Visalakshi

Thermal radiation effects on an unsteady free convective flow of a viscous incompressible flow of a past an exponentially accelerated infinite isothermal vertical plate with uniform mass diffusion in the presence magnetic field are considered. The fluid considered here is a gray, absorbing-emitting radiation but a non-scattering medium. The plate temperature is raised to Tw and the concentration level near the plate is also raised to Cʹw . An exact solution to the dimensionless governing equations is obtained by the Laplace transform method, when the plate is exponentially accelerated with a velocity u= u0 exp(aʹtʹ) in its own plane against gravitational field. The effects of velocity, temperature and concentration fields are studied for different physical parameters such as the magnetic field parameter, thermal radiation parameter, Schmidt number, thermal Grashof number, mass Grashof number and time. It is observed that the velocity increases with decreasing magnetic field parameter or radiation parameter. But the trend is just reversed with respect to a or t .


The present examination is considered to research the steady, boundary layer flow of Casson fluid over a stretching sheet by taking into consideration of suction and injection effects. External magnetic field which is uniform is act on the present model. In fact the nonlinear differential equations are derived from the present flow by utilizing the appropriate transformations. Thereafter exact and numerical solutions are obtained. Impacts of flow influenced parameters of present study for instance Casson fluid parameter, magnetic parameter, suction and injection are analyzed by means of graphs and tables. After that, numerical outcomes which are get hold of by the convergent technique i.e. fourth order Runge-Kutta method with shooting technique and exact solutions are validated by comparing the existing literature. From this comparison there exist a good correlation between present analysis and literature. The outcomes demonstrate that mainly, velocity of the fluid is diminished for increasing estimations of Casson fluid parameter and impact of parameter of magnetic field.


2020 ◽  
Vol 1529 ◽  
pp. 052085
Author(s):  
Hasmawani Hashim ◽  
Norhafizah Md Sarif ◽  
Mohd Zuki Salleh ◽  
Muhammad Khairul Anuar Mohamed

2017 ◽  
Vol 14 (1) ◽  
pp. 25-38 ◽  
Author(s):  
J. V. Ramana Reddy ◽  
V. Sugunamma ◽  
N. Sandeep

Through this paper we investigated the heat and mass transfer in chemically reacting radiative Casson fluid flow over a slandering/flat stretching sheet in a slip flow regime with aligned magnetic field. This study is carried out under the influence of non uniform heat source/sink. First we converted the governing equations of the flow into ordinary differential equations by making use of suitable similarity transformations. The obtained non-linear differential equations are solved numerically using Runge-Kutta based shooting technique. Further, graphical representation has been given to study the effects of various physical parameters on velocity, temperature and concentration fields. Also numerical computations has been carried out to investigate the influence of the physical parameters involved in the flow on skin friction, rate of heat and mass transfer coefficients. Through this investigation, it is observed that aligned angle, Casson parameter and velocity slip parameter have the tendency to control the velocity field. Also heat transfer rate in flat stretching sheet is higher than that of slendering stretching sheet. A good agreement of the present results with the existed literature has been observed. 


2013 ◽  
Vol 18 (4) ◽  
pp. 1087-1097
Author(s):  
R. Muthucumaraswamy ◽  
N. Dhanasekar ◽  
G. Easwara Prasad

Abstract An exact analysis of rotation effects on an unsteady flow of an incompressible and electrically conducting fluid past a uniformly accelerated infinite isothermal vertical plate, under the action of a transversely applied magnetic field is presented. The plate temperature is raised linearly with time and the concentration level near the plate is also raised to C’w. The dimensionless governing equations are solved using the Laplace-transform technique. The velocity profiles, temperature and concentration are studied for different physical parameters such as the magnetic field parameter, chemical reaction parameter, thermal Grashof number, mass Grashof number, Schmidt number, Prandtl number and time. It is observed that the velocity increases with increasing values of the thermal Grashof number or mass Grashof number. It is also observed that the velocity increases with decreasing values of the magnetic field parameter or rotation parameter Ω.


Sign in / Sign up

Export Citation Format

Share Document