scholarly journals The Utilisation of Solar System in Combined Heating System of Water

Author(s):  
Ján Jobbágy ◽  
Koloman Krištof ◽  
Pavol Findura ◽  
Oľga Urbanovičová ◽  
Milan Križan

The paper assessed the topicality and returns of solar system utilization to heating of water. Practical measurements were conducted after reconstruction of the family house. (in Nesvady, Slovak republic), on which the solar system were assembled. The system consists of the gas heater, solar panels, distributions and circulation pump. The solar system was assembled due to decreasing of operation costs and connected with conventional already used gas heating system by boiler Quantum (V = 115 L). The conventional system was used for 21 days to gather basic values for evaluation. At this point it was observed that 11.93 m3 of gas is needed to heat up 1 m3 of water. Used water in this case was heated from initial 16.14 °C to 52.04 °C of output temperature. Stand by regime of boiler was characterized by 0.012 m3.h-1 consumption of gas. The rest of the measurements represent the annual (from 03/2013 to 02/2014) operation process of boiler Tatramat VTS 200L (trivalent) with 200 litres of volume (as a part of Thermosolar solar system). The solar collectors TS 300 are also part of the solar system. An input and output temperatures of heating water we observed along with water and gas consumption, intensity of solar radiation and actual weather conditions. The amount of heat produced by solar system was then calculated. Total investment on solar system were 2,187.7 € (1,475.7 € with subsidy). Therefore, return on investment for the construction of the solar system was set at 23 years even with subsidy.

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 997
Author(s):  
Davide Coraci ◽  
Silvio Brandi ◽  
Marco Savino Piscitelli ◽  
Alfonso Capozzoli

Recently, a growing interest has been observed in HVAC control systems based on Artificial Intelligence, to improve comfort conditions while avoiding unnecessary energy consumption. In this work, a model-free algorithm belonging to the Deep Reinforcement Learning (DRL) class, Soft Actor-Critic, was implemented to control the supply water temperature to radiant terminal units of a heating system serving an office building. The controller was trained online, and a preliminary sensitivity analysis on hyperparameters was performed to assess their influence on the agent performance. The DRL agent with the best performance was compared to a rule-based controller assumed as a baseline during a three-month heating season. The DRL controller outperformed the baseline after two weeks of deployment, with an overall performance improvement related to control of indoor temperature conditions. Moreover, the adaptability of the DRL agent was tested for various control scenarios, simulating changes of external weather conditions, indoor temperature setpoint, building envelope features and occupancy patterns. The agent dynamically deployed, despite a slight increase in energy consumption, led to an improvement of indoor temperature control, reducing the cumulative sum of temperature violations on average for all scenarios by 75% and 48% compared to the baseline and statically deployed agent respectively.


Author(s):  
Wenxue Gao ◽  
Yan Wang ◽  
Lin Yang ◽  
Shaojie Xu ◽  
Weiye Zhou ◽  
...  

2018 ◽  
Vol 210 ◽  
pp. 02023
Author(s):  
Jan Skovajsa ◽  
Martin Zálešák

The article deals with the economic evaluation of investment and optimization of the solar water heating system for family houses. From the point of view of solar systems, the optimal solution is based on the specific application of it. The design is dependent on the location of solar thermal collectors and ration between active aperture area and real daytime consumption. Common calculations according to actual standards often give overstated results, which also reflected in the value of the investments. The article presents the research of optimal parameters of the thermal solar system for preparing of domestic hot water. A combination of related standards and software TRNSYS are used to find optimal parameters. Thanks to created and verified simulation models, it is possible to design parameters so as to avoid under-dimensioning or over-dimensioning of the solar system. Energy price is another factor affects the payback period of investments. This is affected by the used energy sources and their combination. For example, buildings that use electricity to heat water or heating have different energy charges than a building that uses natural gas. So, the aim is to find technically and economically efficient solution.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 483
Author(s):  
Tomasz Czarnecki ◽  
Kacper Bloch

The subject of this work is the analysis of methods of detecting soiling of photovoltaic panels. Environmental and weather conditions affect the efficiency of renewable energy sources. Accumulation of soil, dust, and dirt on the surface of the solar panels reduces the power generated by the panels. This paper presents several variants of the algorithm that uses various statistical classifiers to classify photovoltaic panels in terms of soiling. The base material was high-resolution photos and videos of solar panels and sets dedicated to solar farms. The classifiers were tested and analyzed in their effectiveness in detecting soiling. Based on the study results, a group of optimal classifiers was defined, and the classifier selected that gives the best results for a given problem. The results obtained in this study proved experimentally that the proposed solution provides a high rate of correct detections. The proposed innovative method is cheap and straightforward to implement, and allows use in most photovoltaic installations.


2010 ◽  
Vol 90 (1) ◽  
pp. 135-144
Author(s):  
Milivoj Gavrilov ◽  
Lazar Lazic ◽  
Jasmina Djordjevic

Out of all atmospheric processes on the planets of the Solar System, special attention will be devoted here to leading circulation of planetary or global scales, known as Rossby waves. These waves occur in all rotating fluids that have relative movement to the rotation system. Rossby waves exert dominant influence on so-called global weather. Based on the knowledge of some properties of Rossby waves are made approximate analysis of weather conditions on the planets of the Solar System. Also, these considerations can serve as an introduction to weather forecasting on the planet. .


2019 ◽  
Vol 29 ◽  
pp. 1-16 ◽  
Author(s):  
Jorge Flores-Velazquez ◽  
Federico Villarreal-Guerrero ◽  
Abraham Rojano-Aguilar ◽  
Uwe Schdmith

In some locations with harsh winters, the heat stored in the soil may not be enough to heating a greenhouse, and so artificial heat must be supplied. The objective of this study was to evaluate a numerical model under local weather conditions, in Humboldt University of Berlin, Germany, during winter 2011 to analyze the air dynamics generated through a tube pipe heating system convection in a closed greenhouse, for it to be applicable in producing cold regions in Mexico. Results showed that 100 W m-2 of heat released from the soil kept the environment within acceptable ranges for plant growth from noon to evening. However, the energy lost by long-wave radiation during the night lowered the air temperature to minimal basal temperature. Heat from the pipes placed underneath the crop promoted air movement by convection, producing a uniform distribution of temperature and humidity within the plant canopy.


2013 ◽  
Vol 7 (4) ◽  
pp. 28-33
Author(s):  
Monika Pawlita

Background: The methods of heating houses with system components determine the energy-saving systems. Energy-saving solutions allow to maintain comfortable conditions in the house, while minimizing the cost associated with its operation and at the same time helping to protect natural environment. The examples of such solutions include condensing boilers, heat pumps and solar collectors.Material and methods: The object of the analysis in this paper is typical single-family house occupying the area of 150 m². The comparison of analyzed heating system for a single-family house, including modern energy sources, allows the assessment of the most cost-effective method of heating. Results: Choosing rational method of heating for a single-family house is dictated mainly by economic reasons. The efficiency of the heating sources is also very important. In addition, an important factor is a heating period, which depends on the weather conditions in a given year.Conclusions: The costs of fuel/energy are still growing. Fuel selection is determined mainly by fuel calorific value and the price. To select the type of the heating source one must take into account the cost of kWh of heat.


2011 ◽  
Vol 128-129 ◽  
pp. 882-885
Author(s):  
Rong Fu Zhou ◽  
Ding Xin Shuai ◽  
Yu Tang ◽  
Xue Tong Zhang

Hydrolysis process is the key part of sulfuric acid method’s production technology of titanium dioxide, it is also the most rigorous part of the process control, and precipitate out the white hydration precipitation TiO2 from the mother liquor, and separate from other soluble metal sundry ions, further purify the TiO2. The quality of hydrolysis product not only affects the normal operation of the follow-up, but also affects the quality of the final product directly. This article do some study and design to the hydrolysis automatic control, use computer,DCS and PLC control the hydrolysis operation process, temperature control, steam heating system, That means comprised monitoring station by the DCS,CRT, mouse and keyboard replace the simulates panel and operator, and use the fuzzy theory control the hydrolysis temperature rise process, improve the accuracy and precision of the operating, at the same time, reduce the labor intensity of the workers, realize the automatic control of the hydrolysis process, stabilize and improve the product quality effectively


Sign in / Sign up

Export Citation Format

Share Document