scholarly journals Adsorption of Copper in Soil and its Dependence on Physical and Chemical Properties

Author(s):  
Vítězslav Vlček ◽  
Miroslav Pohanka

Soil samples (n = 11) were collected in the chernozem areas of the Czech Republic (the Central Europe) from the topsoil and used as representative samples. All sampling areas have been used for agricultural purposes (arable soil) and they were selected as typical representatives of agricultural soil. These samples represented the soil with same genesis (to reduction differencies between soil types) but with different soil properties (physical and chemical). Complete chemical and physical analyses were made for confirmation of copper adsorption on solid phase: we analysed the particle size distribution, content of oxidizable carbon (Cox), the cation exchange capacity (CEC), supply of exchange calcium, magnesium, sodium, phosphorus and potassium, soil reaction and the total supply of Fe, Al, Mn, Ca, Mg, K, P and N. The strongest simple correlation between analysed soil properties and copper concentration had content of available magnesium (r = 0.44) and available phosphorus (r = −0.51). In the case of multiple correlations (i. e. collective influence of multiple soil properties) had the strongest influence combination of clay, soil reaction, total content of phosphorus, available magnesium and available phosphorus. The main influence of phosphorus and magnesium is evident. We suppose that copper and phosphorus enter into specific complex. Influence of these five soil properties can explain 92.7 % (r = 0.927) changes in the content of copper changes in the experiment.

2014 ◽  
Vol 6 (1) ◽  
pp. 535-558 ◽  
Author(s):  
Y. Wu ◽  
G. Xu ◽  
J. N. Sun ◽  
H. B. Shao

Abstract. Organic materials (e.g. furfural residue) are generally believed to improve the physical and chemical properties of the soils with low fertility. Recently, biochar have been received more attention as a possible measure to improve the carbon balance and improve soil quality in some degraded soils. However, little is known about their different amelioration of a sandy saline soil. In this study, 56d incubation experiment was conducted to evaluate the influence of furfural and its biochar on the properties of saline soil. The results showed that both furfural and biochar greatly reduced pH, increased soil organic carbon (SOC) content and cation exchange capacity (CEC), and enhanced the available phosphorus (P) in the soil. Furfural is more efficient than biochar in reducing pH: 5% furfural lowered the soil pH by 0.5–0.8 (soil pH: 8.3–8.6), while 5% biochar decreased by 0.25–0.4 due to the loss of acidity in pyrolysis process. With respect to available P, 5% of the furfural addition increased available P content by 4–6 times in comparison to 2–5 times with biochar application. In reducing soil exchangeable sodium percentage (ESP), biochar is slightly superior to furfural because soil ESP reduced by 51% and 43% with 5% furfural and 5% biochar addition at the end of incubation. In addition, no significant differences were observed between furfural and biochar about their capacity to retain N, P in leaching solution and to increase CEC in soil. These facts may be caused by the relatively short incubation time. In general, furfural and biochar have different amendments depending on soil properties: furfural was more effectively to decrease pH and to increase available P, whereas biochar played a more important role in increasing SOC and reducing ESP of saline soil.


2019 ◽  
Vol 70 (1) ◽  
pp. 34-38 ◽  
Author(s):  
Wojciech Stępień ◽  
Monika Kobiałka

Abstract The research was carried out continuously since 1923 in a permanent fertilisation experiment at the Experimental Station of SGGW in Skierniewice. The objective of the research was to determine the effect of long-term fertilisation (Ca, CaNPK, NPK) and crop rotation systems (rye monoculture without fertilisation with manure and five-field rotation with legume crop and manure fertilisation) on selected physical and chemical soil properties. Long-term fertilisation caused various degrees of change in many physio-chemical properties in three soil horizons (Ap, Eet, Bt): pH in KCl, cation exchange capacity, total exchangeable bases, base saturation, content of carbon, nitrogen and mineral forms of nitrogen (NO3, NH4) as well as the carbon-nitrogen ratio. The combined manure and mineral fertilisation increased the sorption capacity, total exchangeable bases, base cation saturation and total content of C and N in comparison to organic or mineral fertilisation. As a result of lime application, an increase in these parameters was determined with the exception of total contents of carbon and nitrogen, showing no differences or a decrease. A positive effect was confirmed in five-field crop rotation, which improves physicochemical soil properties in comparison to cereal monoculture. The C:N ratio narrows down with growing depth because more nitrogen than carbon migrates down the soil profile.


SOIL ◽  
2016 ◽  
Vol 2 (1) ◽  
pp. 63-70 ◽  
Author(s):  
Alemayehu Adugna ◽  
Assefa Abegaz

Abstract. Land use change can have negative or positive effects on soil quality. Our objective was to assess the effects of land uses changes on the dynamics of selected soil physical and chemical properties. Soil samples were collected from three adjacent soil plots under different land uses, namely forestland, grazing land, and cultivated land at 0–15 cm depth. Changes in soil properties on cultivated and grazing land were computed and compared to forestland, and ANOVA (analysis of variance) was used to test the significance of the changes. Sand and silt proportions, soil organic content, total nitrogen content, acidity, cation exchange capacity, and exchangeable Ca2+ content were higher in forestlands. Exchangeable Mg2+ was highest in grazing land, while clay, available phosphorous, and exchangeable K+ were highest in cultivated land. The percentage changes in sand, clay, soil organic matter, cation exchange capacity, and exchangeable Ca2+ and Mg2+ were higher in cultivated land than in grazing land and forestland. In terms of the relation between soil properties, soil organic matter, total nitrogen, cation exchange capacity, and exchangeable Ca2+ were strongly positively correlated with most of soil properties, while available phosphorous and silt have no significant relationship with any of the other considered soil properties. Clay has a negative correlation with all soil properties. Generally, cultivated land has the least concentration of soil physical and chemical properties except clay and available phosphorous, which suggests an increasing degradation rate in soils of cultivated land. So as to increase soil organic matter and other nutrients in the soil of cultivated land, the integrated implementation of land management through compost, cover crops, manures, minimum tillage, crop rotation, and liming to decrease soil acidity are suggested.


Solid Earth ◽  
2014 ◽  
Vol 5 (2) ◽  
pp. 665-671 ◽  
Author(s):  
Y. Wu ◽  
G. Xu ◽  
H. B. Shao

Abstract. Organic materials (e.g., furfural residue) are generally believed to improve the physical and chemical properties of saline soils with low fertility. Recently, biochar has been received more attention as a possible measure to improve the carbon balance and improve soil quality in some degraded soils. However, little is known about their different amelioration of a sandy saline soil. In this study, 56 d incubation experiment was conducted to evaluate the influence of furfural and its biochar on the properties of saline soil. The results showed that both furfural and biochar greatly reduced pH, increased soil organic carbon (SOC) content and cation exchange capacity (CEC), and enhanced the available phosphorus (P) in the soil. Furfural is more efficient than biochar in reducing pH: 5% furfural lowered the soil pH by 0.5–0.8 (soil pH: 8.3–8.6), while 5% biochar decreased by 0.25–0.4 due to the loss of acidity in pyrolysis process. With respect to available P, furfural addition at a rate of 5% increased available P content by 4–6 times in comparison to 2–5 times with biochar application. In reducing soil exchangeable sodium percentage (ESP), biochar is slightly superior to furfural because soil ESP reduced by 51% and 43% with 5% furfural and 5% biochar at the end of incubation. In addition, no significant differences were observed between furfural and biochar about their capacity to retain N, P in leaching solution and to increase CEC in soil. These facts may be caused by the relatively short incubation time. In general, furfural and biochar exhibited a different effect depending on the property: furfural was more effective in decreasing pH and increasing available P, whereas biochar played a more important role in increasing SOC and reducing ESP of saline soil.


AGROFOR ◽  
2018 ◽  
Vol 3 (2) ◽  
Author(s):  
Kamssou KOI ◽  
Victor NAGORNY ◽  
Otilija MISECKAITE ◽  
Yuri MAZHAYSKY

During evaluation of physical and chemical properties of sandy soils and theirfertility in Southern part of Republic of Chad it has been revealed that some soilshave very high content of strontium. Its content varies from 10 to 270 mg/kg ofsoil depending on type of soil, depth of soil layers, clay and organic content.Strontium content negatively correlates with total content of calcium andphosphorus in layers of soil. Low CEC (CEC - Cation-exchange capacity) of soilmay be a reason of possible translocation of strontium from higher to lower layersof soils. Strontium content in soils do not relates with level of radioactivity of soilmeasured. The highest content of strontium has been found in soils developed onsome eolian and colluvio-alluvium deposits. Some researchers hypothesize thatsome endemic and chronic diseases such as Kashin-Beck disease, `Dysostosisenchondralis endemic`, endemic hoiter, osteoarthritis might be caused by highcontent of strontium in water and plant foods contaminated with it. Absence ofconsensus on etiological factors of these diseases confirms that it is worthconsidering necessity of further studies of different affects of high content ofstrontium in water and foods on human health directly or indirectly throughcausing misbalance in mineral nutrition.


2021 ◽  
Vol 1 (2) ◽  
pp. 35-48
Author(s):  
Saipul Saikim ◽  
Hertasning Yatim ◽  
Hidayat AM. Katili

Soil physical and chemical properties are the main factors that significantlyinfluence vanilla production. This study aimed to identify the soil’s physicaland chemical properties, determine the soil fertility status, and evaluate the soilsuitability for vanilla plants cultivated at three villages in Tinangkung UtaraDistrict. This research has been carried out at the long-term monoculture of thevanilla plantation. The soil fertility properties have determined based onphysical properties such as texture (pipete method) and chemical propertiessuch as pH, organic C content (Walkey and Black), P2O5 (olsen) and K2O(HCL25%), base saturation/KB dan cation exchange capacity/CEC ) NH4OAcpH7). The data then matched to PPT soil fertility and BBSDLP land evaluationcriteria for the vanilla plant. The result showed that the soil in the study sitehas clayey texture, neutral soil reaction, moderate KB and P2O5, and moderateto high CEC. On the other hand, the soil exhibited lower content of organic Cand K2O. Despite soil fertility status determined as low, the evaluation analysisresulted marginally suitable, which could be optimised to highly suitable.


2020 ◽  
pp. 77-81

Topography influences the distribution of some soil physical and chemical properties. This study assessed some variation in soil properties resulting from the topographic effect on Basaltic parent material at Vom Jos Plateau State in the Southern Guinea zone of Nigeria. Soil samples were collected at an interval of 20m and at depths of 0 to15cm and 15 to 30cm, parceled, labeled and taken to the laboratory for analysis of the selected for analysis. The results from the study revealed that variations in soil properties along the landscape segments were probably due to their positions toposequence characteristics in soils. Clay, silt and gravel contents varied moderately (CV = 22.9, 15.42 and 32.55% respectively), while sand did not vary much (CV = 8.47%). Organic carbon showed high variability (CV = 38.08%) while soil pH in (H2O and CaCl2) showed less spatial variability (with CV = 4.91 and 6.45% respectively). Available phosphorus has high variability (CV = 37.59%). Magnesium, K and Ca showed high spatial variability (CV = 42.60, 35.85, and 35.84% respectively), while Na and exchange acidity were moderately variable (CV = 24.39 and 24.27% respectively). Generally, some of the soil chemical properties were varied with topographic positions.


1963 ◽  
Vol 39 (4) ◽  
pp. 412-421 ◽  
Author(s):  
George W. Scotter

The effects of forest fires on some physical and chemical soil properties in the Black Lake region of northern Saskatchewan were determined on four burned-over areas, and results were compared with corresponding mature forested areas. Formerly, two of the burns supported jack pine forests and the other two supported black spruce forests.Temperatures, water infiltration rates, and erosion were the physical soil properties considered. Temperatures at the 1-inch and 3-inch depths in the burned-over soils averaged 10.5 F and 9.7 F respectively, higher than soil temperatures under mature forests. Water infiltration rates, compared at one location only, were not impaired. Erosion following fire was slight.Soil nutrients and soil pH were the chemical properties considered. Total exchange capacity decreased on three of the four burns, when compared with mature forests. Exchangeable hydrogen was reduced and available phosphorus increased on each of the burned-over soils. Exchangeable calcium increased on three of the four burned-over soils. No conclusions could be reached for alterations in total nitrogen, exchangeable magnesium, potassium, and sodium. On the burned-over areas acidity decreased at 1-inch depths and 3-inch depths.Forest fire influence both chemical and physical soil properties on the winter range of barren-ground caribou in northern Saskatchewan. These alterations may be important in changing the habitat to one less favorable for the germination and growth of preferred food plants.


Author(s):  
G. Omar ◽  
B. Tasi’u

A multi-locational field trial was conducted at two locations (Orchard of the Bayero University Gezawa village in Gezawa Local Government area) in the Sudan savanna zone of Nigeria to investigate the effect of applications of paraquat and atrazine herbicides on soil physico-chemical properties and maize performance. Pre-planting and plot-by-plot soil samples was taken 24 hours after herbicides application, vegetative growth period, reproductive stage and at harvest were taken and subjected to routine analyses using standard laboratory methods. Crop growth and yield characters were measured using standard methods. The experiment consisted of 7 treatments laid out in a randomized complete block design replicated 3 times. Results indicated highly significant differences between the locations in the content of the sand, silt and clay separates but no significant differences were observed between the treatments. There were highly significant variations in soil reaction, electrical conductivity, organic carbon, total nitrogen, available phosphorus and all the exchangeable bases, except calcium at both locations. Soil reaction, electrical conductivity, organic carbon, total nitrogen, available phosphorus, calcium, magnesium, potassium, sodium and cation exchange capacity showed no significant differences with all the treatments across the locations. Electrical conductivity, organic carbon, total nitrogen, available phosphorus and sodium were low across the locations but were higher at Bayero University Kano. The soils at both locations were generally acid. Thus, the soils at both locations were non-saline and non-sodic. Only the yield varied with the treatments. The highest yield was obtained at Bayero University Kano. Application of the highest treatment (4 kg/ha Atrazine + 4 kg/ha Paraquat was associated with high sand content and strong soil acidity). Combined application of 3 kg/ha Atrazine + 3 kg/a Paraquat was associated with low total nitrogen and exchangeable potassium and with the highest yield of maize. Application of Atrazine at 3 kg/ha corresponded with low organic carbon and low leaf area. Paraquat applied at 4 kg/ha was associated with very low concentration of exchangeable Na and moderate concentration of available P. Combined application of paraquat at 4 kg/ha was associated with low cation exchange capacity. Combined application of 3 kg/ha atrazine and 3 kg/ha paraquat is recommended for higher maize yield. Integrated soil fertility management is recommended in the study areas.


Author(s):  
C. V. Ogbenna ◽  
V. E. Osodeke

Aim: A pot experiment was carried out to determine the effect of sawdust ash and lime (Ca(OH)2) on soil characteristics and yield of sunflower in acidic soil of southeastern Nigeria. Study Design: The experiment was laid out in split-plot design, using sawdust ash (0, 1, 2, 3, 4 t ha-1) as the sub plot and lime (0, 0.5, 1.0, 1.5 t ha-1) as the main plot. Place and Duration of Study: Study was conducted outdoors at Michael Okpara University of Agriculture Umudike, Nigeria, during the 2010 planting season. Materials and Methods: Treatment combinations were applied to the 60 buckets containing soil, mixed thoroughly and watered adequately. After 1 week of treatment application, two sunflower seeds were planted and later thinned to one seedling per bucket. Plant growth and yield data were collected. Pre planting and post-harvest soil samples were collected and analyzed for soil properties. Results: Results showed that with the exception of organic carbon there was significant effect of treatments on all soil chemical properties. Lime and sawdust ash (SDA) as single and combined treatments significantly increased total nitrogen (P=0.05), available phosphorus (P<0.010), and base saturation (P<0.012). The interaction between SDA and lime significantly (P=0.05) increased total exchangeable bases and effective cation exchange capacity, while soil pH was significantly increased (P=0.05) by single applications. The increases in soil chemical properties led to significant positive response of the sunflower. With the exception of number of leaves, other plant parameters (Plant height, stem diameter, head weight, 50 seed weight, head diameter) had significant increases for sawdust ash alone at P=0.05. Correlation studies showed positive significant relationship between soil pH and sunflower yield. Conclusion: The study showed that sunflower performed best at the combination of 3 tha-1 SDA and 1.5 t ha-1 lime producing a mean head weight of 45.4 g.


Sign in / Sign up

Export Citation Format

Share Document